.print ac i(R) iP(R)
.print ac i(L) iP(L)
.opt nopage
.end
Выходной файл покажет следующие значения токов:
I(RA)=5.263Е+01, IP(RA)= -3.962Е+01
I(RB)=5.263E+01, IP(RB)= -3.962E+01
I(R) =4.034E+01, IP(R) = 3.310E-01
Значение линейного тока I(RA) близко к рассчитанному значению 53 А при фазовом угле, близком -40°. Коэффициент мощности
pf = cos(-40°) = 0,76.
Сумма векторов токов ветвей (токи через
С 2 0 380uF
и изменим одну из команд печати, чтобы включить в выходной файл ток через конденсатор. Теперь выполните анализ снова. Выходной файл покажет следующее:
I(RA) = 4.411Е+01, IP(RA) =-2.299Е+01
I(RB) = 5.296Е+01, IP(RB) = -3.993Е+01
I(C) = 1.676Е+01, IP(C) = 9.001Е+01
I(R) = 4.060E+01, IP(R) = 2.510E-02
I(L) = 3.401E+01, IP(L) = -8.997E+01
Мы видим, что линейный ток I(RA) уменьшился до 44,11 А при отстающем угле ≈23°, ясно показывая эффект повышения коэффициента мощности. Коэффициент мощности теперь равен
Конденсатор проводит ток 16,76 А с фазовым углом 90°, вызывая изменение линейного тока. Обратите внимание, что ток через резистор датчика
Исправление коэффициента мощности в трехфазных цепях
На рис. 2.36 компонентами, показанными справа, представлен трехфазный двигатель, включенный по схеме треугольника. Компоненты
Рис. 2.36. Трехфазный двигатель, подключенный по схеме треугольника
В каждую из линий трехфазной сети включены резисторы, понижающие линейное напряжение. Во входной файл включены команды, обеспечивающие вывод различных напряжений и токов. Он показан в составе выходного файла на рис. 2.37.
Circuit for Power-Factor correction
VAB 12 2 AC 240V 0
VBC 20 0 AC 240V - -120
VCA 10 1 AC 240V 120
RS1 12 1 0.01
RS2 20 2 0.01
RS3 10 0 0.01
RA 1 3 0.01
RB 2 4 0.01
RC 0 5 0.01
R1 3 2B 2.5
R2 5 0С 2.5
R3 4 1A 2.5
L1 1A 3 9.28MH
L2 2B 5 9.28MH
L3 0С 4 9.28MH
.AC LIN 1 60HZ 60HZ
.PRINT AC I(RA) IP(RA)
.PRINT AC I(RB) IP(RB)
.PRINT AC I(RC) IP(RC)
.PRINT AC I(R1) IP(R1)
.PRINT AC I(R2) IP(R2)
.PRINT AC I(R3) IP(R3)
.PRINT AC V(1A, 2B) VP(1A,2B)
.PRINT AC V(2B,0C) VP(2B,0C)
.PRINT AC V(0C,1A) VP(0С,1А)
.OPT NOPAGE
.END
FREQ I(RA) IP(RA)
6.000E+01 9.615E+01 -8.402E+01
FREQ I(RB) IP(RB)
6.000E+01 9.615E+01 1.560E+02
FREQ I(RC) IP(RC)
6.000E+01 9.615E+01 3.598E+01
FREQ I(R1) IP(R1)
6.000E+01 5.551E+01 -1.140E+02
FREQ I(R2) IP(R2)
6.000E+01 5.551E+01 5.981E+00
FREQ I(R3) IP(R3)
6.000E+01 5.551E+01 1.260E+02
FREQ V(1A,2B) VP(1A,2B)
6.000E+01 3.220E+02 -1.316E+02
FREQ V(2B,0C) VP(2B,0C)
6.000E+01 3.220E+02 -1.157E+01
FREQ V(0C,1A) VP(0С,1А)
6.000E+01 3.220E+02 1.084E+02
Рис. 2.37. Выходной файл для анализа схемы на рис. 2.36
Обратите внимание на порядок следования индексов в каждой инструкции. Для каждого пассивного элемента индексы находятся в соответствии с направлениями токов, показанными на рис. 2.36. Векторная диаграмма токов и напряжений показана на рис. 2.38. Угол между напряжением фазы V(1a, 2b) и током фазы I(R1) равен: 3,22+51,23=54,45°. Ток отстает от напряжения на 54,45°. Косинус этого угла — коэффициент мощности