Рис. 2.41. Трехфазный выпрямитель
Выполните анализ, воспользовавшись программой Probe, и проверьте результаты, показанные на рис. 2.42. Затем удалите графики напряжений и получите график тока нагрузки I(RL). Убедитесь, что он изменяется между минимальным значением 43,5 мА и максимальным значением 92,3 мА.
Рис. 2.42. Форма напряжений в схеме на рис. 2.41, полученная в программе Probe
Команда .MODEL используется, чтобы описать диод. Диод один из многих приборов, поддерживаемых PSpice. Имя DI определяется нашим выбором, но буква D в начале обозначения требуется всегда и не может быть заменена другой. Команды, вводящие три одинаковых диода, устанавливают, что DA, DB и DC основаны на том же самом типе диода, который мы применяли ранее для DI. Для других примеров обратитесь к приложению В.
Регулировка напряжения в трехфазных системах
Мощная фидерная линия должна быть спроектирована так, чтобы падение напряжения между источником и нагрузкой не превышало предельного значения. Часто разрешается использовать падение напряжения для регулировки напряжения на нагрузке в пределах 5 или менее процентов. Схема на рис. 2.43 используется, чтобы иллюстрировать требования к регулированию напряжения. Мы видим, что в каждую линию включены сопротивление и индуктивность. Будет ли желательное регулирование напряжения достигнуто при
Рис. 2.43. Схема для иллюстрации регулирования напряжения
Нагрузка, соединенная в звезду, представляет собой трехфазный двигатель, предназначенный для питания от сети 440 В, 60 Гц. Исходное линейное напряжение составляет 460 В, откуда фазное напряжение:
Входной файл не требует никаких дополнительных пояснений. Он показан на рис. 2.44 вместе с результатами анализа. Процент регулирования напряжения Δ
Voltage Regulation for Three-Phase Load
VA 1 0 AC 265.58V 0
VB 5 0 AC 265.58V -120
VC 9 1 AC 265.58V 120
R1 1 2 0.077
R2 5 6 0.077
R3 9 10 0.077
L1 2 3 0.244mH
L2 6 7 0.244mH
L3 10 11 0.244mH
RL1 4 0 2.7
RL2 8 0 2.7
RL3 12 0 2.7
LL1 3 4 6.12mH
LL2 7 8 6.12mH
LL3 11 12 6.12mH
.AC LIN 1 60HZ 60HZ
.PRINT AC I(R1) IP(R1) I(R2) IP(R2)
.PRINT AC I(R3) IP(R3)
.PRINT AC V(3) VP(3) V(7) VP(7)
.PRINT AC V(11) VP(11)
.OPT NOPAGE
.END
**** AC ANALYSIS TEMPERATURE = 27.000 DEG С
FREQ I(R1) IP(R1) I(R2) IP(R2)
6.000E+01 7.237E+01 -4.083E+01 7.237E+01 -1.608E+02
FREQ I(R3) IP(R3)
6.000E+01 7.237E+01 1.917E+01
FREQ V(3) VP(3) V(7) VP(7)
6.000E+01 2.570E+02 -3.108E-01 2.570E+02 -1.203E+02
FREQ V(11) VP(11)
6.000E+01 2.570E+02 5.969E+01
Рис. 2.44. Выходной файл при моделировании схемы на рис. 2.43
Двухфазные системы
Проведем анализ двухфазной системы, скорее всего, для удовлетворения собственного любопытства, пользуясь тем, что его очень легко реализовать на PSpice. На рис. 2.45 приведена такая схема, где полные сопротивления нагрузки равны Z=(25+j50) Ом для каждой фазы.
Рис. 2.45. Двухфазная схема
Two-Phase System
V1 1 0 AC 120 0
V2 2 0 AC 120 -90
R1 1 3 0.10
R2 2 7 0.10
R3 0 5 0.10
RL1 3 4 25
RL2 7 6 25
L1 4 5 0.133H
L2 6 5 0.133H
.AC LIN 1 60HZ 60HZ
.PRINT AC V(3,5) VP(3,5)
.PRINT AC V(7,5) VP(7,5)
.PRINT AC I(RL1) IP(RL1)
.PRINT AC I(RL2) IP(RL2)
.PRINT AC I(R3) IP(R3)
.OPT NOPAGE
.END
**** AC ANALYSIS TEMPERATURE = 27.000 DEG С
FREQ V(3,5) VP(3,5)
6.000E+01 1.200E+02 2.284E-01
FREQ V(7,5) VP(7,5)
6.000E+01 1.196E+02 -8.986E+01
FREQ I(RL1) IP(RL1)