Одна из сильных сторон PSpice заключается в способности анализировать системы с нелинейными характеристиками, например, исследовать усилитель мощности при подаче на его вход сигнала с высокой амплитудой. При этом усилитель начинает работать на нелинейной части характеристики, что приводит к искажениям в выходном напряжении. В этой главе мы выясним, насколько велики искажения, проанализировав гармонический состав выходного напряжения усилителя.
Основная и вторая гармоники
Начнем с простой схемы, позволяющей рассмотреть основные концепции, которые мы используем в дальнейшем для более сложных схем. На рис. 7.1 показано входное напряжение
Рис. 7.1. Схема с нелинейной связью входного и выходного напряжений
Эта функциональная связь отображается в команде Е c помощью полиномиальных коэффициентов. Общий вид полинома:
Чтобы перейти к зависимости нашего примера, используем три последних числа команды ввода Е. Мы хотим провести гармонический анализ, чтобы увидеть, какие из гармоник присутствуют в выходном напряжении, но сначала попробуем определить, чего же мы должны ожидать.
Прежде чем перейти к разложению временных зависимостей в ряд Фурье, необходимо выполнить анализ для переходных процессов (программу transient analysis в PSpice).
Поэтому необходимо использовать обе команды .TRAN и .FOUR. Обычно выполняется анализ переходных процессов для полного периода основной частоты. В этом примере
Чтобы дать более подробное описание входного напряжения
При включении во входной файл команды .FOUR производится гармонический анализ, дающий разложение в ряд Фурье для результатов анализа переходного процесса. Параметры для этой команды включают частоту основной гармоники и переменные, для которых будет получено разложение. В этом примере такими переменными будут периодические функции входного V(1) и выходного V(2) напряжений. Входной файл:
Fourier Analysis; Decomposition of Polynomial
Vin 1 0 sin(0 1 1000); аргументы для смещения, максимума и частоты
Rin 1 0 1MEG
Е 2 0 poly(1) 1,0 1 1 1; последние 3 значения для k0, k1, k2
Rout 2 0 1MEG
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2)
.PROBE
.END
Проведите анализ, затем получите графики V(1) и (V)2. Убедитесь, что V(1) — точная копия входного напряжения
Рис. 7.2. Графики напряжений
Рассмотрим также выходной файл для этой схемы (рис. 7.3), на котором показаны следующие значения для напряжений узлов: V(1)=0 В и V(2)=1 В. Это означает, что хотя входной сигнал не имеет смещения, выходное напряжение имеет смещение V(2)=1 В.
На рис. 7.3 в таблице компонентов ряда Фурье для V(1) не все компоненты имеют реальные значения. Так, значение постоянной составляющей теоретически должно быть равно нулю, но анализ дает очень малое значение 3.5Е-10, не равное в точности нулю из-за накопления ошибки округления.
Fourier Analysis; Decomposition of Polynomial
Vin 1 0 sin(0 1 1000); arguments are offset, peak, and frequency
Rin 1 0 1MEG
E 2 0 poly(1) 1,0 1 1 1; last 3 1s are for k0, k1, k2
Rout 2 0 1MEG
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2)
.PROBE
.END
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE