Читаем Организация как система. Принципы построения устойчивого бизнеса Эдвардса Деминга полностью

Теперь рассмотрим, что Шухарт имеет в виду, когда говорит об управляемой (контролируемой) и неуправляемой (неконтролируемой) воспроизводимости, и, соответственно, что подразумевает под процессом, находящимся в управляемом (подконтрольном) и неуправляемом (неподконтрольном) состоянии. Идеи, отражающие сущность дела, нетрудны для понимания, однако имеют далеко идущие последствия.

Предположим, что в некотором процессе мы систематически регистрируем во времени результаты измерений. Измеряемыми величинами могут быть длина стального прутка после операции обрубки, или затраты времени на обслуживание машины, или ваш собственный вес до приема пищи, или процент дефектных (не попавших в допуски) в партии от поставщика, или коэффициент интеллекта, или время между выставлением счета и получением денег и т. д. На рисунках 5a–5d показаны четыре примера записи данных (карты текущих значений), регистрируемых в ходе измерений. В каждом примере время изменяется вдоль горизонтальной оси, а чем выше расположена точка на вертикальной оси, тем больше размер, длина, запаздывание и вообще все то, что мы регистрируем в этот момент.

На рисунках 5а и 5b изображен типичный пример того, что мы можем ожидать от процесса, находящегося в управляемом состоянии. Рисунки 5с и 5d явно указывают на процесс, находящийся в неуправляемом состоянии. А все четыре графика демонстрируют наличие вариаций в измерениях (поскольку без вариаций график был бы просто горизонтальной линией). Разница в том, что на рисунках 5а и 5b характер вариаций на самом деле сохраняется в течение всего периода наблюдений, в то время как на рисунках 5с и 5d имеются весьма заметные изменения в поведении вариаций во времени. Какое же значение это имеет для практики? Как оказалось, очень важное.



В примерах, приведенных на рисунках 5а и 5b, мы можем спрогнозировать будущие результаты этих процессов (конечно, без абсолютной определенности, ведь всегда может что-то случиться и испортить все дело). Но в случаях, представленных на рисунках 5с и 5d, мы не способны ничего предсказать, поскольку поведение выхода этих процессов изменяется совершенно непредсказуемым образом.

Несколько более формальная интерпретация того, что подразумевается под процессом, находящимся в статистически управляемом и неуправляемом состояниях, дается на отдельном листе с диаграммами, взятыми из документа компании Ford[20].

На рисунке 6 наглядно представлено статистическое распределение. Маленькие кубики, показывающие число измерений, располагаются вдоль горизонтали в соответствии с измеряемыми значениями. Совокупность таких кубиков и образует фигуру, называемую гистограммой.



Предположим, мы регистрируем все больше и больше данных (и, соответственно, подстраиваем вертикальную ось, чтобы гистограмма не вылезала за верх страницы). Тогда при некоторых существенных условиях, которые обсуждаются ниже, общая картинка стабилизируется и изменения в ней с приходом все новых и новых измерений будут практически незаметны. Она становится графическим представлением статистического распределения результатов измерений. Этот рисунок характеризует возможное поведение разброса результатов измерений. Данные и распределение на рисунке 6 интерпретировались как размеры некоторых образцов, но они могут точно так же интерпретироваться в контексте всех примеров, приводившихся выше, как и в миллионах других примеров.

Ключевая фраза для понимания рисунка 6 – «если сам исходный процесс стабилен» – напрямую связана с понятием статистически управляемого процесса. Идея заключается в том, что если в ходе измерений на процессы оказывает влияние некоторое постороннее воздействие (например, по отношению к приведенным выше примерам: настройка машины изменилась, норма обслуживания для механика по наладке увеличилась, вы сели на диету, ваш поставщик стал использовать сырье плохого качества и т. д.), то результаты измерений не могут рассматриваться как происходящие из одного и того же источника, и, таким образом, никакое стабильное распределение нельзя использовать для его представления. На самом деле, как мы увидим позже, определение стабильности, представляемое единственным фиксированным распределением, слишком идеализировано с практической точки зрения (позже мы будем ссылаться на эту искусственно-идеальную ситуацию как на представляющую идеально точную стабильность).



Как видно из рисунка 7, распределения могут отличаться во многих отношениях. Термин «положение» относится к положению среднего значения, «разброс» характеризует степень вариабельности относительно среднего, а «форма» указывает, например, расположены ли данные значения симметрично относительно среднего или, напротив, есть некоторые сжатия с одной стороны и растяжения с другой.

В терминах статистического распределения рисунки 8 и 9 соответственно определяют, так сказать, на глаз, что подразумевается под процессами, находящимися и не находящимися в статистически управляемом состоянии.

Перейти на страницу:

Похожие книги

Литературная мастерская. От интервью до лонгрида, от рецензии до подкаста
Литературная мастерская. От интервью до лонгрида, от рецензии до подкаста

Перед вами руководство по нон-фикшн от школы литературного мастерства Creative Writing School. Каждая глава – практическое введение в какой-либо жанр, написанное признанным мастером. Среди авторов – известные писатели, журналисты и блогеры, преподаватели Creative Writing School и Высшей школы экономики. В книге рассмотрены классические жанры документальной литературы – например, биография, рецензия, эссе, – а также самые актуальные направления журналистики и блогинга: лонгриды, подкасты, каналы в Telegram.Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

Александр Александрович Генис , Александр Витальевич Горбачёв , Алексей Владимирович Вдовин , Екатерина Эдуардовна Лямина , Ирина Лукьянова

Деловая литература / Отраслевые издания / Финансы и бизнес
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература