Де Батс — еще один фанат головоногих, который начинал как любитель динозавров. Когда первоначальный интерес к динозаврам привел его к изучению геологии, он стал все больше интересоваться беспозвоночными. Однажды в каком-то документальном фильме он услышал знаменитую, часто пересказываемую историю про осьминога, который выбрался из собственного аквариума и залез к соседям-рыбам, чтобы полакомиться ими[78]
. Тогда де Батс задумался о том, как проходила повседневная жизнь дальних предков осьминога. Среди прочего его интересовал вопрос об их репродуктивном поведении.Он знал, что у тех видов современных осьминогов, для которых характерны более крупные яйца, сами кладки меньше, чем у осьминогов, откладывающих относительно мелкие яйца. Разница в количестве яиц в кладке может достигать нескольких порядков. Взявшись за изучение древних аммонителл, де Батс обнаружил не менее существенные различия: по приблизительным оценкам — от 35 крупных яиц до 220 000 мелких яиц на самку. Хотя различия между видами аммоноидов по этим признакам существовали на протяжении всего девона, маленькие яйца и плодовитые родители, как правило, встречались позже.
Со времен своего возникновения в кембрии большинство головоногих откладывали сравнительно немного крупных яиц, полных питательного желтка, чтобы обеспечить развивающихся отпрысков всем необходимым. Это было важно, поскольку окружающая среда не изобиловала детским питанием. Начиная с ордовика, некоторые из ранних прямораковинных головоногих могли начать экспериментировать и откладывать яйца помельче, и тогда на свет появлялись более мелкие детеныши, которым приходилось самим добывать себе пищу в планктоне. Но именно великий расцвет планктона в девоне оправдал стратегию головоногих родителей отправлять самих детей за едой, а не запасать им дорогой обед в виде желтка. Аммоноиды откладывали яйца все меньшего размера, из которых быстро вылуплялись пожирающие планктон детеныши — и чем мельче становились яйца, тем больше яиц могла отложить каждая самка.
К сожалению, побочным эффектом уменьшения размера яиц стало то, что только что вылупившиеся малыши оказались уязвимыми для большего количества хищников. Все более тугое скручивание аммонителлы, вероятно, выработалось в качестве защиты, а усилившееся преследование со стороны хищников приводило к естественному отбору более туго закрученных раковин у взрослых особей.
Возможно, вы спросите, не приходилось ли более мелким детенышам расти дольше, то есть не приводило ли сокращение размеров яйца к увеличению продолжительности жизни животного. По-видимому, все-таки нет. Исследуя развитие раковины от зародышевого центра до конечной жилой камеры, мы можем узнать, как быстро животное росло и взрослело, и для большинства аммоноидов ответ будет — очень быстро. Аммоноиды некоторых видов могли созревать всего за год, других — за пять или максимум за десять лет.
То есть аммоноиды конвергентно пришли к тому же образу жизни, что и большинство современных колеоидов, известных тем, что живут быстро и умирают молодыми. Современные кальмары откладывают тысячи, иногда миллионы яиц и тут же умирают — так и не увидевшись с собственным потомством. У большинства видов детеныши вырастают, откладывают собственные яйца и умирают меньше чем за год. Аммоноиды и кальмары — едва ли единственные животные с такой жизненной стратегией: она характерна для большинства насекомых и, что удивительно, для еще одной чрезвычайно успешной когда-то, а ныне полностью вымершей группы животных — динозавров.
Динозавры жили намного дольше, чем комары или кальмары, но их созревание шло очень быстро по сравнению с другими позвоночными, особенно с первыми млекопитающими. Каждое новое поколение создает новые возможности для естественного отбора, и при более быстрой, чем у млекопитающих, смене поколений динозавры просто быстрее эволюционировали. Они быстрее приспосабливались, распространялись и наращивали разнообразие, оттеснив млекопитающих более чем на сотню миллионов лет[79]
.История раннего воцарения динозавров на суше повторилась у головоногих в океане: в течение долгих геологических периодов аммоноиды процветали, и после первого из множества серьезных ударов — вымирания в конце девона — они довольно быстро восстановились.
Этот кризис, вероятно, был вызван тем же притоком растительного материала с суши, который послужил критическим толчком эволюции первых аммоноидов. На примере современных океанов мы видим, как огромные количества питательных веществ, сброшенных в воду (например, сток удобрений с сельскохозяйственных предприятий), могут оказывать вредоносное воздействие на экосистему. Морские бактерии трудятся, чтобы переварить избыток питательных веществ, в процессе вбирают слишком много кислорода из окружающей воды — и животные, которым необходимо дышать, лишаются этой возможности[80]
. Подобная цепь событий предположительно произошла и в конце девона, когда широкомасштабное вымирание вызвало гибель великих рифовых систем и привело к исчезновению множества видов аммоноидов[81].