Читаем Осциллограф - ваш помощник (приставки к осциллографу) полностью

На нагрузке же смесителя (резисторы R13, R14.2) выделяются колебания разностной частоты в пределах примерно 500 Гц…20 кГц в зависимости от частоты перестраиваемого генератора. Получить сигнал частотой менее 500 Гц не удается из-за явления синхронизации частоты обоих генераторов при небольших расхождениях в настройке. Детали С6, R13, С28 — это фильтр нижних частот, ослабляющий прошедшие через смеситель колебания генераторов. С движка переменного резистора R14.2 сигнал 3Ч подается на разъем XS3, который при работе приставки подключают ко входу проверяемого усилителя 3Ч.

Чтобы обеспечить изменение частоты перестраиваемого генератора в указанных пределах, нужно подавать с движка переменного резистора R2 постоянное напряжение от 0 до 9 В. При меньшем диапазоне изменения напряжения будет соответственно уменьшен и диапазон частот сигнала, снимаемого с разъемов XS2 и XS3.

Для получения качающейся частоты колебаний 3Ч нажимают кнопку SB3 «ГКЧ 3Ч» (при этом кнопка SB1 опускается и секция SB1.2 соединяет через резистор R1 верхний по схеме вывод резистора R2 с разъемом XS1 — на него подают пилообразное напряжение развертки с осциллографа). Резистор R1 ограничивает амплитуду этого напряжения на резисторе R2 до 9 В, чтобы максимальные изменения частоты перестраиваемою генератора составили 20 кГц (как и при перестройке генератора постоянным напряжением). Диапазон качания частоты, т. е. пределы ее изменения будут зависеть от положения движка переменного резистора R2 — чем он выше по схеме, тем больше диапазон изменения частоты.

При проверке же трактов ПЧ приемников нажимают кнопку SB2 «ГКЧПЧ». В этом случае на варикапы поступает фиксированное постоянное напряжение, снимаемое с делителя R3R4, а также пилообразное, подаваемое через конденсатор С1 с движка переменного резистора R2. Фиксированное напряжение устанавливает частоту генератора равной 465 кГц, а пилообразное изменяет ее в обе стороны максимум на 10 кГц (при установке движка переменного резистора в верхнее по схеме положение).

Как уже было сказано, при работе перестраиваемого генератора в режиме качания частоты необходимо подать на резистор R2 пилообразное напряжение амплитудой 9 В. Причем напряжение должно быть возрастающее, чтобы АЧХ соответствовала общепринятому начертанию — нижние частоты слоев, а средние и высшие — справа. Владельцы осциллографов, в которых на специальное гнездо выведено именно такое напряжение развертки, полностью повторяют приставку по приведенной схеме и подбирают нужную амплитуду пилы на выводах резистора R2 изменением поминала резистора R1.

Владельцам осциллографов с пилообразным напряжением достаточной амплитуды, но спадающим, можно рекомендовать замену транзисторов на аналогичные по мощности, но противоположной, по сравнению с указанной на схеме, структуры, изменение полярности включения варикапов и оксидного конденсатора С10, а также полярности питающего напряжения.

Владельцы же осциллографа ОМЛ-2М (ОМЛ-ЗМ) уже знают, что пилообразное напряжение, выведенное на гнездо на задней стенке осциллографа, достигает максимальной амплитуды 3,5 В, что меньше требуемого. Поэтому возможны два варианта. При первом можно вообще изъять резистор R1 и подавать пилу на разъем XS1, соединенный с верхним по схеме выводом переменного резистора R2. В этом случае максимальная частота в режиме качания уменьшится с 20 до 15 кГц, что вполне приемлемо для проверки и налаживания многих моно- и стереофонических усилителей невысокого класса.

В случае же необходимости исследовать более качественные усилители с полосой пропускаемых частот до 20 кГц придется дополнить приставку двухкаскадным усилителем на транзисторах VT6, VT7 и включить его вместо ограничительного резистора R1. Амплитуда пилы на резисторе R2 возрастет до 8…8,5 В.

Возможно, у вас возникнет вопрос о целесообразности истолкования двух каскадов для получения всего лишь менее чем тройного усиления (с 3,5 до 8,5 В). Действительно, для подобного усиления достаточно было бы и одного каскада. Но на выходе его получится спадающее пилообразное напряжение. Чтобы добиться не только нужного коэффициента усиления, но и заданной полярности сигнала, усилитель пришлось выполнить на двух транзисторах.

Перейдем к рассказу о деталях приставки-ГКЧ. Транзисторы VT3 и VT7 могут быть, кроме указанных на схеме, КТ361Д, ГТ309А-ГТ309Г, КТ326А, КТ326Б, П401-П403, П416, остальные транзисторы — КТ315А-КТ315И, КТ301Г-КТ301Ж, КТ312А-КТ312В. Варикапы VD1, VD2 — KB109A-КВ109Г. Конденсаторы C1, С2, С7, С9 — БМ, МБМ, КЛС; C10 — К50-12; остальные — КТ, КД, ПМ, КЛС.

Переменный резистор R2 может быть СПО-ОД СПЗ-9а, СПЗ-12, сдвоенный резистор R14 — СПЗ-4аМ, но его можно заменить и одинарными (R14.1 и R14.2) такого же типа, что и R2. Постоянные резисторы — МЛТ-0,125. Переключатели — П2К с зависимой фиксацией, при нажатии одной из клавиш остальные находятся в отжатом положении.

Перейти на страницу:

Все книги серии Приложение к журналу «Радио»

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника