Зеркальное изображение АЧХ при этом пропадет (рис. 44,
Далее можете проверить действие регуляторов тембра. Установите ручку регулировки тембра по высшим частотам в положение наименьшего усиления этих частот (наибольшего их ослабления). Размах изображения на экране осциллографа уменьшится. Установите его равным 2…3 делениям изменением чувствительности осциллографа и «просмотрите» изображение АЧХ перемещением движка переменного резистора ГКЧ. На экране увидите картину, показанную на рис. 44,
Рис. 44,
А теперь в такое же положение поставьте и ручку регулировки тембра по низшим частотам. Изображение на экране осциллографа изменится (рис. 44,
Установите движки регуляторов тембра в другое крайнее положение, чтобы был подъем усиления на низших и высших частотах, и сохраните размах изображения удобным для наблюдения изменением чувствительности осциллографа. Картина на экране будет похожа на изображенную на рис. 44,
Рис. 44,
Вот так, поворачивая ручку «Частота» ГКЧ (переменный резистор R2) из одного крайнего положения в другое, можно наблюдать АЧХ усилителя и ее изменение в зависимости от положения регуляторов тембра.
Но, согласитесь, далеко не всегда достаточно бывает констатировать изменение формы АЧХ, иногда нужно знать, скажем частоту спада характеристики либо частоту, на которой начинается действие фильтра или частотозадающей цепочки обратной связи. Иначе говоря, нужен визуальный контроль частоты любого участка АЧХ.
Эта задача выполнима, если есть образцовый (или отградуированный самодельный) генератор 3Ч. Его сигнал нужно подать на детектор через резистор сопротивлением 5…10 кОм (рис. 46).
Амплитуду сигнала устанавливают такой, чтобы на линии развертки осциллографа появилась «дорожка» небольшой ширины (рис. 47,
Установив на экране изображение АЧХ, скажем, с «завалом» на высших частотах (рис. 47,
При определенной частоте в этом месте появится небольшой участок изображения с «нулевыми биениями» — это и есть наша частотная метка. По мере дальнейшего уменьшения частоты образцового генератора метка будет перемещаться влево по линии развертки. Подведя ее под начало слада АЧХ, нетрудно по образцовому генератору определить частоту этой точки характеристики. Разумеется, большой точности измерения от этого метода ожидать не следует, но помощь от него несомненна.
Проведенная работа — всего лишь пример использования ГКЧ для сравнительной оценки АЧХ усилителя 3Ч, поскольку позволяет с предложенной приставкой «видеть» не всю характеристику, а лишь наиболее характерную ее часть — от 500 Гц и выше. Возможно, вам понравится этот способ испытания усилителей и вы захотите построить более совершенную приставку. Тогда можно рекомендовать изготовление конструкции, о которой рассказывалось в статье С. Пермякова «Низкочастотный измеритель АЧХ» в «Радио», 1988, № 7, с. 56–58. Она позволяет контролировать АЧХ в диапазоне частот 40 Гц…25 кГц.
Для проверки и настройки только усилителей ПЧ радиовещательной аппаратуры может быть собран более простой ГКЧ (рис. 48), разработанный московским радиоконструктором Б. Степановым. Он рассчитан на совместную работу с любым осциллографом, имеющим выход пилообразного напряжения. Пределы изменения средней частоты генератора составляют 450…510 кГц, максимальная девиация — 50 кГц, максимальная амплитуда выходного напряжения на нагрузке 75 Ом — 1 В.
На транзисторе VT1 выполнен генератор, рабочая частота которого зависит от индуктивности катушки L1, емкости конденсаторов С2—С4 и выходной проводимости транзистора VT1, имеющей также емкостный характер. Среднюю частоту ГКЧ устанавливают конденсатором переменной емкости С4.
Чтобы осуществить частотную модуляцию сигнала генератора, на базу транзистора подается пилообразное напряжение с осциллографа. Амплитуду его можно изменять переменным резистором R2.