Кроме того, это соотношение трудно объяснить простым горизонтальным переносом генов (даже при том, что интенсивность этого процесса могла быть в древние времена намного выше, чем сейчас). Такой перенос шел бы более-менее равномерно между всеми участниками сообщества. И если бы дело было только в нем, то предок эукариот “нахватался” бы генов от самых разных соседей-бактерий — и грамположительных, и грамотрицательных. Между тем Гупта и Голдинг обнаружили, что у эукариот очень много белков и генов, каким-то образом унаследованных от грамотрицательных бактерий, а вот от грамположительных не нашлось на тот момент ни одного. Конечно, эта избирательность не случайна, вопрос только в ее источнике.
В общем, состав эукариотного генома дает все основания полагать, что при возникновении эукариот клетки археи и грамотрицательной бактерии просто слились (см. рис. 14.4). Получилась единая клетка, сначала унаследовавшая геномы обоих “родителей” — Гупта и Голдинг прямо так их и называют. Но, поскольку два полнофункциональных генома клетке были не нужны, часть каждого из них исчезла, а между оставшимися частями произошло разделение функций. От архейного генома в эукариотной клетке остались в основном “информационные” гены, обеспечивающие работу самого генетического аппарата. А от бактериального генома — в основном “операционные” гены, обеспечивающие обмен веществ. Тогда будет вполне разумно предположить, что в химерной структуре (каковой эукариотная клетка в любом случае несомненно является) от археи произошло ядро, а от бактерии — цитоплазма вместе с наружной мембраной. И получается, что это именно архея проникла внутрь бактерии. Вероятно, сначала она жила во впячивании наружной мембраны бактерии — этаком “заливе”. Потом глубокие складки мембраны бактерии, со всех сторон охватившие архею, сомкнулись друг с другом, образовав внутреннюю мембранную систему — ядро и эндоплазматическую сеть. После этого плазматическая мембрана самой археи стала лишней и исчезла. Фактически от археи остался голый генетический аппарат, заключенный внутри системы бактериальных мембран. Ну а гены самой бактерии, сначала находившиеся снаружи от ядра, постепенно мигрировали в него (молекулярные механизмы, делающие возможной такую миграцию, известны). И получилась нормальная эукариотная клетка.
Интересно, что в гипотезе Гупты (назовем ее так для краткости, хотя ее поддерживали и другие ученые) есть кое-что общее с уже знакомой нам гипотезой Баумов. И там и там получается, что остаток исходной архейной клетки находится в основном в эукариотном ядре. Хотя приводящие к этому выводу сценарии прямо-таки полярно противоположны. Гипотеза Баумов, при всем ее бесспорном изяществе, по части состава мембран (архейные vs. бактериальные) дает предсказания, строго обратные тому, что наблюдается в действительности, и выйти из этого положения она может только путем добавления “эпициклов”.
Пурификасьон Лопес-Гарсия и Давид Морейра справедливо замечают, что загадочное превращение архейных мембран в бактериальные остается настоящей ахиллесовой пятой традиционных симбиотических гипотез, согласно которым цитоплазма эукариотной клетки имеет архейное происхождение[267]
. А вот если допустить, что происхождение цитоплазмы — бактериальное, то проблема мембран тут же снимается и существующая картина получает простое объяснение.Слабые места у этой гипотезы тоже есть — куда ж без них. Прежде всего, она никак не объясняет происхождения митохондрий (которые как-никак тоже потомки грамотрицательных бактерий и заведомо являются источником значительной части генов, полученных эукариотами из этой эволюционной ветви). С учетом гипотезы Гупты выходит, что симбионтов, без которых немыслим эукариотный организм, было не два, а