На этом рисунке показан сферический слой газа с центром в центре звезды. Как отмечено выше, этот слой имеет тенденцию сжиматься. Но... мы видим теперь, что давление газа порождает противоположные силы на внутренней и внешней поверхностях слоя. Стрелки на рисунке показывают, что силы на внутренней поверхности стремятся раздуть слой, а силы на внешней поверхности сжимают его внутрь. Так как давление на внутренней поверхности больше по сравнению с внешней (напомним, что давление убывает наружу!), то внутренняя поверхность выигрывает. В результате силы давления стремятся расширить слой.
Итак, мы видим, что возникает противоборствующая сила, порождаемая давлением, которая должна
Для примера последнего явления рассмотрим мысленный эксперимент, т.е. представим такую ситуацию, которую, конечно, нельзя практически осуществить. Пусть благодаря какому-то волшебству Солнце внезапно окажется без внутреннего давления. Тогда оно начнёт неудержимо сжиматься. Расчёты показывают, что это сжатие будет происходить с нарастающей скоростью, пока все Солнце не сожмётся в точку. Наблюдатель, находящийся на поверхности Солнца, обнаружит, что по его часам весь процесс займёт всего двадцать девять минут!
Такой пример, хотя и соответствующий несколько экстремальной ситуации, иллюстрирует важность точного баланса между силами давления и тяготения. В гл. 10 мы вспомним этот пример в другом контексте, и тогда он уже не покажется столь невероятным.
ТЕМПЕРАТУРА ВНУТРИ ЗВЕЗДЫОсознав, что внутри звезды должны быть огромные давления, продолжим изучение выводов из этого факта. За счёт чего возникает давление?
Есть две причины, по которым звезда может иметь очень большие внутренние давления. Первая, более очевидная, связана с тем давлением, которое имеет любой не абсолютно холодный газ. Действительно, из наблюдений мы знаем, что внешняя поверхность звезды имеет температуру несколько тысяч градусов.
Если сделать разумные допущения, основанные на лабораторных опытах по изучению газов, нагретых до высокой температуры, можно прийти к выводу, что с возрастанием давления внутри звезды растёт и температура. Таким образом, температура, составляющая на поверхности звезды несколько тысяч градусов, непрерывно растёт внутрь, пока не достигает нескольких миллионов градусов в центре.
Вторая причина, по которой в звезде возникают большие давления, связана с излучением. Вращающаяся игрушка на рис. 39 работает благодаря давлению излучения. Свет, падающий на пластинки, поглощается зачернённой стороной и отражается блестящей стороной. В результате возникает сила давления, вращающая пластинки.
Мы привыкли к тому, что давление газа, образующего атмосферу Земли, может удержать вертикально столбик ртути высотой 760 мм. Но мы редко отдаём себе отчёт в том, что падающий на Землю солнечный свет также оказывает давление, потому что оно чрезвычайно мало по сравнению, с атмосферным
691. Но внутри звезды при высоких температурах в сотни тысяч и миллионы градусов давление излучения чудовищно велико. Можно попытаться понять это, если вернуться к гл. 2 и вспомнить, что свет состоит из частиц — фотонов, несущих порции энергии. Когда поток таких фотонов высокой плотности и энергии наталкивается на поверхность, он оказывает на неё огромное давление. Таким образом, давление излучения становится важным фактором для многих звёзд.691 Давление излучения от Солнца могло бы удержать на Земле вертикальный столбик ртути высотой лишь в одну 35-миллиардную долю миллиметра!
ПЕРЕНОС ИЗЛУЧЕНИЯ