Кельвин и Гельмгольц высказали мысль, что именно это и происходит в звёздах типа Солнца. Хотя звезда никоим образом не является шаром с одинаковой плотностью вещества, приведённые выше аргументы применимы и в этом случае с минимальными изменениями. В частности, коэффициент в формуле меняется на другой. Мы пренебрежём этими незначительными деталями и продолжим рассмотрение примера с однородным шаром.
Итак, согласно Кельвину и Гельмгольцу, звезда медленно сжимается и теряет энергию, которая переходит в излучение. Если взять в качестве конкретного примера Солнце, то можно подсчитать ту энергию, которую оно потеряло в процессе сжатия от бесконечно рассеянного облака газа (состояние II в рассматриваемом примере) к теперешнему состоянию шара радиусом около 700 миллионов метров (состояние I). Масса Солнца равна 2-1030 кг. Поэтому по приведённой формуле для однородного шара находим, что потерянная в результате сжатия энергия равна
(лампочка мощностью 1 Вт потребляет 1 Дж энергии за 1 с.)
Полученное число кажется огромным, но сравним его со скоростью потери энергии Солнцем, которая в настоящее время составляет
Считая, что Солнце непрерывно
светило так же ярко, находим, что оно израсходовало бы весь запас
энергии
По человеческим меркам это довольно значительный промежуток времени. Но не по геофизическим стандартам! Геофизические оценки возраста Земли и Солнечной системы дают значение примерно 4,6 млрд. лет, и в течение почти всего этого времени Солнце должно было светить с интенсивностью, не слишком отличающейся от сегодняшней. Так, данные палеонтологии указывают на наличие примитивной жизни на Земле по крайней мере 3 миллиарда лет тому назад, а жизнь тесно связана с непрерывным снабжением энергией от Солнца. Если, следуя гипотезе сокращения Кельвина — Гельмгольца, принять, что Солнце светит всего несколько миллионов лет, было бы невозможно объяснить геофизические данные о значительно больших масштабах шкалы времени.
К середине 20-х годов стало ясно, что гипотеза Кельвина—Гельмгольца не является правильным ответом на вопрос о внутренних источниках звёздной энергии. Требовался совершенно новый и значительно более мощный источник энергии.
Именно в это время проблемой занялся Эддингтон. Серьёзно отнесясь к гипотезе, впервые высказанной Перреном, что при слиянии четырёх ядер водорода и превращении их каким-то образом в ядро гелия должна высвобождаться энергия, Эддингтон заключил, что ключ к пониманию источника звёздной энергии связан не с гравитационной потенциальной энергией, а с энергией, содержащейся внутри атомного ядра. Мы уже говорили, что при температуре несколько тысяч градусов атом не может существовать как целое, от него отрываются электроны и он становится ионизованным. Но ядро атома при таких температурах остаётся в целости, поскольку оно представляет более прочно связанную систему, чем атом. Эддингтон чувствовал, что при температуре в миллионы градусов, существующей в центре звезды, мы уже не можем игнорировать то, что происходит внутри прочно связанных ядер атомов.
В середине 20-х годов в атомной физике совершались первые шаги, связанные с только что открытыми законами квантовой теории. Почти ничего не было известно о том, как устроено атомное ядро. Поэтому аргументы Эддингтона базировались на предположениях и интуиции. Мысль о том, что атомные ядра могут разбиваться или сливаться вместе, казалась в то время настолько радикальной, что физики-атомщики отказались признать подобную возможность, пусть даже при тех высоких температурах, которые существовали по расчётам Эддингтона в центре звёзд. Тем не менее Эддингтон был уверен, что только здесь лежит ключ к ответу на давний вопрос: почему светят звёзды?
В своей классической книге «Внутреннее строение звёзд» Эддингтон так говорит сомневающемуся Томасу: «Мы не согласны с теми критиками, которые считают, что звёзды недостаточно горячи для этого. Пусть поищут место погорячее». ЗВЕЗДА КАК ЯДЕРНЫЙ РЕАКТОР
Уже через два десятилетия Эддингтон был реабилитирован. В конце 30-х годов был проведён ряд исследований в области ядерной физики, благодаря которым стало возможным не только представить, как ведут себя ядра при очень высоких температурах, но и провести детальные расчёты того, сколько энергии можно получить из запертого ядерного склада, который хотел открыть Эддингтон. Посмотрим на проблему с современной точки зрения.
На рис. 42 показаны два ядра
— водорода и гелия. Ядро водорода состоит лишь из одной
положительно заряженной частицы, называемой