Читаем От чёрных облаков к чёрным дырам полностью

Рис. 44. Перенос энергии в более и менее массивных звёздах. В зачернённой области происходит конвективный перенос энергии; в незачерненной области энергия переносится излучением. Наверху показана звезда менее массивная, а внизу — более массивная, чем Солнце

В основном есть две зоны — внутренняя сердцевина и внешняя оболочка (рис. 44). В очень массивной звезде сердцевина конвективная, а в оболочке преобладает излучение, а в звёздах малой массы два процесса, меняются местами. Критическая масса, при которой происходит переход, примерно равна массе Солнца M. Само Солнце относится ко второму типу.

Второе важное обстоятельство, связанное с массой звезды, это тот путь, по которому протекают термоядерные реакции в её центре. Есть два способа достичь слияния ядер водорода в ядро гелия. В звёздах малой массы наиболее эффективной оказывается так называемая pp цепочка. Она состоит из следующей совокупности реакций:

p + p2H + e+ + ν,

2H + p3He + излучение,

3He + 3He → 4He + 2p.

В приведённых реакциях происходит последовательное добавление протонов, почему весь процесс и получил название pp цепочки. Заметим, что окончательным результатом этой цепочки реакций является превращение четырёх протонов в ядро гелия.

В звёздах большой массы этот процесс не очень эффективен и заменяется другим, названным CNO-циклом, в котором ядра углерода (С), азота (N) и кислорода (О) играют роль катализаторов. В химической или ядерной реакции катализаторы являются посредниками, ускоряющими ход реакции, но в конце процесса катализатор остаётся в целости. Именно так происходит в приводимой ниже CNO-цепочке:

12C + p13N + излучение,

13N → 13C + e+ + ν,

13C + p14N + излучение,

14N + p15O + излучение,

15O → 15N + e+ + ν,

15N + p4He + 12C.

Чтобы эти процессы заработали, требуется наличие небольших количеств ядер С, N, О, особенно ядер 12С 801. В конце цикла содержание С, N, О в звезде остаётся, однако, прежним. Критическая черта, отделяющая звёзды большой массы от звёзд малой массы, не является резкой и находится в области где-то вблизи М. Таким образом, Солнце и менее массивные звёзды используют водородное топливо в pp-цепочке, а более массивные, чем Солнце, звёзды в основном используют CNO-цикл.

801 Таким образом, CNO-цикл заранее предполагает наличие в звезде элементов, тяжелее 1H и 4He. В гл. 7 мы вернёмся к этому вопросу.

Реакции, входящие как в pp-цепочку, так и в CNO-цикл, происходят с разной скоростью. На самом деле, первая реакция в обоих процессах является самой медленной и определяет общую скорость синтеза. Характерное время колеблется от нескольких миллиардов лет для звёзд очень малой массы до сотен миллионов лет для сверхмассивных звёзд.

Далее мы увидим, что после завершения синтеза гелия в центре звезды начинается образование более тяжёлых ядер. Но эти процессы происходят существенно быстрее, чем синтез гелия. Следовательно, в течение большей части жизни звезды внутри неё синтезируется гелий. Возвращаясь к диаграмме Г—Р (рис. 45), мы видим, что в этом заключается причина того, почему главная последовательность содержит больше всего точек. Именно в звёздах на главной последовательности медленно, но непрерывно работает термоядерный реактор, превращающий водород в гелий.

Рис. 45. Диаграмма Г—Р

Соотношение масса — светимость для звёзд главной последовательности имеет вид

L ~ Mn,

где n=1,6 для звёзд малой массы (М ≲ М) и п = 5,4 для звёзд большой массы (М ≳ М).

Следовательно, если мы «поднимаемся» по главной последовательности от её конца В к другому концу А, нам встречаются звёзды все большей и большей массы и все большей и большей светимости. Можно провести и расчёты поверхностной температуры для моделей звёзд разной массы и проверить, согласуется ли вычисленная таким способом поверхностная температура с тем, что указано на диаграмме Г—Р. Такое вычисление обеспечивает проверку правильности теории в целом.

Признаком большого успеха современных вычислений является очень хорошее согласие между теорией и наблюдениями. В наши дни астрофизик, исходя из уравнений Эддингтона и используя наилучшие из имеющихся данных атомной и ядерной физики, осуществляет с помощью ЭВМ решение ряда дифференциальных уравнений. Действительно, многие тонкие теоретические детали звёздных моделей невозможно выяснить без помощи быстрых ЭВМ.

Можно осуществить и другую, экспериментальную проверку таких моделей, однако, мы отложим обсуждение этого вопроса до гл 11. КРАСНЫЕ ГИГАНТЫ

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука