Читаем Открытие без границ. Бесконечность в математике полностью

В 1673 году Христиан Гюйгенс доказал, что циклоида является таутохронной кривой и определяется как траектория, описываемая точкой окружности при качении этой окружности вдоль прямой без проскальзывания.



На рисунке показано, как при вращении окружности образуется циклоида.


Гюйгенс понял, что если маятник будет двигаться по циклоиде, то высота, с которой он будет опускаться при колебаниях, перестанет иметь значение. Подобно шарику, скатывающемуся в чашке, маятник всегда будет достигать нижней точки за одинаковое время.

Но как добиться именно такого движения маятника? Решить эту задачу помогло одно из наиболее удивительных свойств циклоиды: эволюта циклоиды также является циклоидой. Понятие эволюты слишком сложно, чтобы объяснить его здесь, но понять его геометрический смысл нетрудно. Допустим, что мы разделили циклоиду пополам и соединили её половины в вершине А, как показано на рисунке.



Если мы возьмём нить заданной заданной длины, закрепим её конец в точке А и вытянем её так, что она всегда будет опираться на одну из ветвей циклоиды, то конец этой нити опишет кривую, которая также будет циклоидой. Гюйгенс нашёл способ изготовить маятник с незатухающими колебаниями, которые были ограничены двумя ветвями циклоиды. Схема этого маятника приведена на рисунке выше.

Хотя время нельзя считать физической величиной, подобно массе или температуре, его можно измерить, и изобретение Гюйгенса позволило в повседневной жизни считать время дискретным.

Ритм нашей жизни по-прежнему определяют звуки «тик-так», отмеряющие дискретные промежутки времени. Однако в научном мире интервал между «тик» и «так» удивительным образом сокращался. Говоря простым языком, он в бесконечное число раз меньше секунды. Современные атомные часы отмеряют промежутки времени в 1/9192631770 секунды. Насколько же дискретны эти часы!

Парадоксы Зенона

Дискретное состоит из элементов, отдельных единиц. А непрерывное? Кажется логичным считать, что непрерывное не может иметь подобной структуры, так как единичные элементы можно разделить, а между двумя соприкасающимися элементами не может находиться ничего — если бы там что-то находилось, его также можно было бы разделить на части. Если мы поразмыслим над этим хотя бы немного, то увидим, что понятие бесконечно малой величины вплотную подводит нас к понятию непрерывности. Размышления о природе непрерывного занимали важное место в греческой философии, одним из самых заметных представителей которой был Зенон. В своих известных парадоксах он продемонстрировал непрочность любой теории, в которой использовались бесконечно большие или бесконечно малые величины.

Главной целью рассуждений Зенона было подтвердить правильность теорий Парменида (предполагается, что он был учителем Зенона), который утверждал, что всё сущее является неделимым как в пространстве, так и во времени. Кроме того, Зенон также хотел поспорить с пифагорейцами, считавшими порождением всего сущего «непрерывный поток».

Следствием невозможности разделить время на промежутки стала невозможность движения, которое понималось как последовательность участков пространства, которые занимал объект в течение некоторого периода времени. Идея Зенона заключалась в следующем: если принять верной гипотезу, противоположную гипотезе Парменида, мы получим противоречие столь абсурдное, что оно будет абсолютно неприемлемо с позиций здравого смысла. Этот логический метод называется доведением до абсурда, и Зенон был если не создателем, то по меньшей мере одним из первых, кто широко использовал его.

Суть метода заключается в следующем: предполагается, что определённая гипотеза верна, и на её основе делается ряд логических умозаключений, которые ведут к очевидно ложному результату, на основании чего делается вывод о ложности исходной гипотезы. В терминах логики в основе этого метода лежат следующие соотношения:

И=>И

Л=>Л

Л=>И,

где ИИСТИНА, ЛЛОЖЬ, => — логическая связка, означающая «если… то». Иными словами, И=>И означает, что из истинного утверждения следует другое истинное утверждение, таким образом, истинная предпосылка никогда не может вести к ложному следствию. Если же вывод ложный, то исходное положение неверно. С помощью этих логических умозаключений, лежащих в основе метода доведения до абсурда, можно было доказать ложность некоторого утверждения, что и делал Зенон в своих парадоксах.

Пифагорейцы считали, что реальность состоит из точек: точки образуют прямые, прямые — поверхности, поверхности — трёхмерные тела. Зенон не принимал этого мнения, указывая, что поскольку точки не имеют размеров, то всё составленное из них также не может иметь размеров, то есть не может существовать. Кроме того, всё составленное из точек можно разделить на части бесконечное число раз, что ведёт к множеству абсурдных ситуаций.

* * *

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии