Читаем Открытие без границ полностью

Мы очень часто определяем, что верно, а что нет, руководствуясь здравым смыслом, основанным на чувствах, которые, говоря языком современных технологий, можно определить как средства фиксации и обработки окружающей нас реальности. Нечто является разумным в той степени, в которой на это указывают наши ощущения. Сколь парадоксальным ни казался бы нам полет стрелы, органы чувств ясно указывают, что стрела отдаляется от нас. Разумеется, Зенону это было прекрасно известно, но ему также было известно, что чувства не всегда могут служить надежной опорой разуму.

Он рассуждал так: подобно тому, как у вещи либо есть размеры, либо нет, предмет издает или не издает звук. Корзина, полная зерен пшеницы, издает определенный звук, когда мы тянем ее по земле. Зенон задавался вопросом: издает ли звук одно-единственное зерно? Если да, то издает ли звук половина зерна? Как можно предположить, если и далее последовательно делить зерно на части, наступит момент, когда этот звук будет неразличим. Исходя из этого факта, можно утверждать, что сумма элементов, равных нулю, всегда будет нулевой, то есть если мы соберем вместе множество предметов, не издающих звук, то и их совокупность также не будет издавать звуков.

Целью Зенона было показать, что в определенных рассуждениях мы не можем доверять нашим органам чувств — они должны уступить место интуиции, что часто и происходит при математических рассуждениях. Однако, как вы увидите далее на примере теорий Кантора, интуиция также может быть обманчивой, и мы не можем руководствоваться ею тогда, когда бесконечность является реальным объектом, с которым можно работать так же, как с натуральными числами.

Зенон считал, что нечто может состоять из бесконечного числа элементарных частей только тогда, когда каждая из этих частей не имеет размера: в противном случае эти части можно разделить, и они не могут считаться элементарными. Однако если части объекта не имеют размеров, то не имеет размеров и сам объект, так как сумма величин, не имеющих размера, также не может иметь размер.

Так греки определили термин «апейрон», который пришел на смену понятию «бесконечность». Апейрон означал отсутствие четко определенного предела. Это соответствовало идее, согласно которой предмет бесконечен, поскольку может иметь сколь угодно большие размеры. Апейрон не относился, например, к бесконечному числовому ряду, в котором не существует последнего числа. Аналогичным образом определялись бесконечно малые величины, которые могут иметь сколь угодно малые размеры. Этому понятию было дано строгое определение в математическом анализе лишь в XIX веке.


Квадратура круга


Задачам на построение с помощью циркуля и линейки, известным с античных времен, в Древней Греции уделялось большое внимание. Разнообразие этих задач очень велико — они могут быть очень простыми, очень сложными, а порой и вовсе не имеющими решения. Наиболее известны из них задачи о трисекции угла, удвоении куба и квадратуре круга — сложность последней вошла в поговорку.

Когда речь идет о построениях с помощью циркуля и линейки, следует придерживаться определенных правил, так как в противном случае задачи становятся тривиальными. Например, найти середину отрезка с помощью линейки, на которую нанесены миллиметровые деления, очень просто — для этого даже не потребуется циркуль. Но определим, что мы будем понимать под «линейкой» при решении этих задач. Линейка — это идеальный предмет с абсолютно ровной границей, который служит для проведения прямых. На ней отсутствуют какие-либо отметки, позволяющие измерить расстояние. Циркуль представляет собой обычный циркуль, раствор которого может быть любым. Логично, что его нельзя использовать для нанесения меток, с помощью которых можно измерить расстояние.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука