Читаем Открытие без границ полностью

Первые приближенные значения √2 содержали всего 4–5 знаков после запятой.

Достаточно точное значение, содержащее 65 знаков после запятой, записывается так:

√2 ~= 1,41421356237309504880168872420969807856967187537694807317667973799.

С помощью современных компьютеров можно получить приближенное значение этого числа, содержащее несколько миллионов знаков после запятой.


Множества чисел


Определение различных множеств чисел сложно для понимания и требует знаний математики, выходящих за рамки этой книги. Существуют альтернативные определения, менее строгие, но более понятные, которые основываются на практическом применении множеств для решения уравнений. Отправной точкой являются так называемые натуральные числа. Множество натуральных чисел 1, 2, 3, … обозначается буквой . Это множество записывается так:

= {0, 1, 2, 3, 4, 3, 6, 7…}

Некоторые авторы не включают 0 в множество натуральных чисел, что совершенно оправданно: это число появилось в результате длительных и глубоких размышлений, поэтому его сложно назвать натуральным, то есть естественным.

На множестве натуральных чисел решаются уравнения вида

х — 2 = 0.

Однако уравнения вида х + 2 = 0 на этом множестве решить нельзя, так как отрицательные числа не являются натуральными. Если добавить к множеству натуральных чисел отрицательные числа и 0, получим целые числа. Множество целых чисел обозначается буквой .

Аналогичным образом вводятся остальные множества чисел. Например, для решения уравнений вида

2х + 3 = 0,

корнем которого является х = —3/2, необходимо ввести множество рациональных чисел . Для уравнений вида

х2 — 2 = 0

следует ввести множество иррациональных чисел. Объединение этого множества и множества рациональных чисел является множеством вещественных чисел .

Наконец, уравнение

х + 2 = 0

не имеет вещественных решений, так как не существует такого вещественного числа, которое было бы квадратным корнем отрицательного числа. Следующий шаг, позволяющий решить уравнения такого типа, — введение комплексных чисел, множество которых обозначается буквой . Этот шаг также является последним, потому что было доказано: любое уравнение с комплексными коэффициентами всегда имеет решение (основная теорема алгебры).

Каждое из определенных нами множеств включает предыдущее (является его алгебраическим расширением):


Библиография

BOYER С.В. Historia de la matematica, Barcelona, Destino, 2009.

CANTOR G. Fundamentos para una teoria general de conjuntos, Madrid, Alianza Universidad, 1986.

COLLETTE J.P. Historia de la matematica, Madrid, Siglo XXI, 1985.

DEDEKIND R. ¿Que son у para que sirven los numeros? Madrid, Alianza, 1998.

GUTHRIE Ch. Historia de la filosofia griega, Madrid, Gredos, 2009.

KLINE M. El pensamiento matematico de la Antigiiedad a nuestros di'as, Madrid, Alianza Universidad, 1992.

MANKIEWICZ R. Historia de las matemdticas, Barcelona, Paidos, 2005.

MONNOYEUR F. El infinito de los matemdticos, el infinito de los filosofos, Paris, Editions Belin, 1995.

MOSTERIN J. Los logicos, Madrid, Espasa Calpe, 2000.

STEWART I. De aqui al infinito, Barcelona, Critica (Grijalbo Mondadori), 1998.

ZELLINI P. Breve historia del infinitoy Madrid, Siruela, 2003.

* * *

Научно-популярное  издание

Выходит  в  свет  отдельными  томами  с  2014  года

Мир  математики

Том  18

Эирике  Грасиан

Открытие  без  границ. Бесконечность  в  математике


РОССИЯ

Издатель, учредитель, редакция: ООО «Де Агостини», Россия

Юридический адрес: Россия, 105066, г. Москва, ул. Александра Лукьянова, д. 3, стр. 1

Письма читателей по данному адресу не принимаются.

Генеральный директор: Николаос Скилакис

Главный редактор: Анастасия Жаркова

Выпускающий редактор: Людмила Виноградова

Финансовый директор: Наталия Василенко

Коммерческий директор: Александр Якутов

Менеджер по маркетингу: Михаил Ткачук

Менеджер по продукту: Яна Чухиль

Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ru, по остальным вопросам обращайтесь по телефону бесплатной горячей линии в России:

8-800-200-02-01

Телефон горячей линии для читателей Москвы:

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука