Читаем Открытие без границ полностью

МНОЖЕСТВА И НАЦИЗМ

Математическое сообщество решило отдать дань уважения труду Кантора, для чего к его 70-летнему юбилею были организованы торжества, однако Первая мировая война помешала реализовать эти планы. Тогда группа немецких математиков собралась в его доме, чтобы вручить ученому в знак признания мраморный бюст, который в настоящее время хранится в Университете Галле. В период правления Гитлера этот бюст был убран, так как теория множеств считалась «еврейской математикой».

* * *

Бесконечность в XXI веке


До появления современной физики бесконечность упоминалась только в философских и богословских дискуссиях. В математике она присутствовала, можно сказать, естественным образом, так как, по словам Кронекера, «нам дана свыше» бесконечная последовательность натуральных чисел. Различия между актуальной и потенциальной бесконечностью затронули и геометрию, в которой использовалось понятие бесконечной прямой. Однако полноправным элементом математики бесконечность стала только с появлением математического анализа, анализа бесконечно малых. Как говорил Гильберт, «математический анализ можно в известном смысле назвать единой симфонией бесконечного».

Однако частью нашей повседневной реальности бесконечность стала лишь благодаря открытиям в физике и астрономии. До начала XX века астрономы считали, что Вселенная включает Солнце, планеты и далекие звезды. Спустя некоторое время они открыли, что Солнечная система — часть галактики, состоящей из нескольких миллионов солнечных систем. Постепенно пространство стало считаться достаточно большим, чтобы вместить несколько миллиардов галактик. Но почему на этом следовало остановиться? Кто сказал, что в космосе не будут обнаружены новые структуры большего размера, что позволит считать, что размеры Вселенной намного больше? Бесконечна ли Вселенная? Ответ на этот вопрос до сих пор не найден и, возможно, не будет найден никогда.

С другой стороны, чем больше ученые изучают субатомные частицы, тем более важную роль в физике начинают играть бесконечно малые величины. Атом как таковой перестал быть неделимым, каким его считали древние греки, и стал подобен Солнечной системе в миниатюре. Однако физики не остановились на этом: были открыты частицы, содержащиеся внутри атомного ядра, и их размеры составляют менее 10–15 метра. Пока что можно вести речь о невообразимо малых, но не бесконечно малых величинах. Тем не менее в одной из физических теорий, которую оказалось труднее всего подтвердить экспериментально, а именно в квантовой электродинамике, изучаются элементарные частицы, в частности электроны и кварки, которые с точки зрения математики рассматриваются как точки, следовательно, они подобны точкам вещественной прямой и ведут себя похожим образом.

Возможно, ученые когда-нибудь докажут, что в природе не существует и никогда не существовало различий между потенциальной и актуальной бесконечностью и что противоречие между ними лишь мнимое.

Приложение

Иррациональность √2


Первое известное доказательство иррациональности квадратного корня из 2 принадлежит философу-досократику, представителю пифагорейской школы Гиппасу из Метапонта (род. ок. 500 г. до н. э.), который, создав это доказательство, не только проявил способности к математике, но и затронул тему, табуированную в его среде. Не будем забывать о легенде, согласно которой за всякое упоминание о существовании иррациональных чисел пифагорейцы карали смертью.

Как и в большинстве подобных доказательств, включая и приводимое в некоторых неканонических изданиях «Начал» Евклида, в доказательстве Гиппаса используется метод доведения до абсурда. На современном языке его доказательство звучит следующим образом.

Если √2 — рациональное число, это означает, что его можно представить как частное двух целых вида

√2 = p/q

Отметим, что эта дробь является несократимой, то есть ее числитель и знаменатель не имеют общих множителей. Возведя обе части равенства в квадрат, получим

2 = p2/q2

и, как следствие,

Р = 2q2.

Это означает, что р2 четно, поэтому р также четно. Таким образом, р можно представить как число, кратное 2, то есть в виде р = 2n. Имеем

2q2 = р = (2n)2 = 4n2.

Упростив равенство, получим

q2 = 2n2.

Иными словами, q2 четное, поэтому q также четное. Мы пришли к выводу, что и р, и q — четные числа, таким образом, числитель и знаменатель дроби p/q имеют общий множитель, что противоречит исходной гипотезе. Это означает, что √2 нельзя представить в виде частного двух целых.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука