Читаем Открытие без границ полностью

НЕОСМОТРИТЕЛЬНЫЙ МАТЕМАТИК

Научный журнал, созданный Генри Ольденбургом в 1665 году, издается до наших дней. Его издание прерывалось только дважды: в первый раз — из-за эпидемии чумы в Лондоне, во второй раз — из-за болезни Ольденбурга, все свое время посвящавшего работе. Его энтузиазм был так велик, что каждую неделю он писал для журнала пять колонок. Ольденбург считал, что наука не знает границ, поэтому продолжал публиковать свои статьи даже во время войны. Но в те времена это было очень неосмотрительно, и Ольденбург на три месяца был заключен в Лондонский Тауэр.

* * *

Противоречивость бесконечности


Кронекер как-то сказал: «Бог создал первые десять чисел, все остальное создал человек», выразив тем самым, сколь велика заслуга математики. По его мнению, все в математике должно было строиться из известных, четко определенных элементов и за конечное число этапов. Иными словами, Кронекер не хотел ничего слышать об актуальной бесконечности. Как-то раз он заявил, что от бесконечности следует отказаться как от «…пагубной бессмыслицы, унаследованной от древней философии и запутанной теологии. Без нее мы можем достичь всего, чего захотим…»

Кронекер был явным последователем финитизма, а также операционизма, в котором не признаются никакие рассуждения, не подкрепленные четко определенными математическими операциями. Он заявил, очевидно, имея в виду труды Кантора, что математике необходим контроль со стороны признанных ученых, так как «богатый практический опыт решения полезных и интересных задач даст математике новый смысл и новый импульс. Однобокие и интроспективные умозрительные заключения не дают плодов».

Следует учитывать, что Кронекер был одним из редакторов журнала Крелле, поэтому неудивительно, что в 1877 году он отклонил все рукописи, переданные Кантором для публикации в этом журнале. Расхождение во взглядах переросло в личную неприязнь, и Кронекер публично назвал Кантора ренегатом, шарлатаном и совратителем учащейся молодежи. Не будем забывать, что Кантор был лучшим учеником Кронекера, естественно, что он очень болезненно переживал подобное отношение учителя и получил глубокую психологическую травму, от которой ему так и не удалось оправиться.


Дедекинд


Юлиус Вильгельм Рихард Дедекинд (1831–1916), который родился в Брауншвейге и был четвертым ребенком в зажиточной семье, большую часть жизни посвятил математическим исследованиям. Он был алгебраистом и стремился сформировать фундаментальную основу анализа, для чего в качестве базы выбрал множества и отображения множеств.

Вейерштрасс, Кантор и Дедекинд независимо друг от друга работали над определением вещественных чисел. Работы Кантора и Дедекинда стали классическими и вошли в учебники. Труды Кантора, в основе которых лежала теория множеств, были наиболее близки Дедекинду, особенно потому, что оба они работали над большой темой непрерывности пространства, носившей больше философский, нежели математический характер. И Кантор, и Дедекинд утверждали, что доказать непрерывность пространства абсолютно невозможно. Максимум, что можно сделать, — это принять гипотезу о непрерывности пространства в качестве постулата.



На этой памятной марке, выпущенной в честь Дедекинда, справа изображена формула разложения числа на простые множители.


В 1872 году, находясь на отдыхе в Швейцарии, Кантор познакомился с Дедекиндом — одним из немногих математиков того времени, если не сказать единственным, с которым он поддерживал близкие отношения, основанные на взаимном доверии и уважении. Рождение теории множеств можно четко проследить, если ознакомиться с их перепиской в 1874–1884 годах. Любопытно, что в большинстве наиболее важных статей Дедекинд почти не использует понятие «множество»: он считал, что Кантор уже совершил наиболее важные открытия в этой области, поэтому больше внимания уделял понятию отображения.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука