3) проверка факторных переменных на значимость осуществляется до тех пор, пока не найдётся хотя бы одна переменная, для которой не выполняется условие
39. Модели регрессии, нелинейные по факторным переменным
При исследовании социально-экономических явлений и процессов далеко не все зависимости можно описать с помощью линейной связи. Поэтому в эконометрическом моделировании широко используется класс нелинейных моделей регрессии, которые делятся на два класса:
1) модели регрессии, нелинейные относительно включенных в анализ независимых переменных, но линейные по оцениваемым параметрам;
2) модели регрессии, нелинейные по оцениваемым параметрам.
К моделям регрессии
, нелинейным относительно включённых в анализ независимых переменных (но линейных по оцениваемым параметрам), относятся полиномы выше второго порядка и гиперболическая функция.Модели регрессии, нелинейным относительно включённых в анализ независимых переменных, характеризуются тем, что зависимая переменная
Полиномы или полиномиальные функции применяются при анализе процессов с монотонным развитием и отсутствием пределов роста. Данному условию отвечают большинство экономических показателей (например, натуральные показатели промышленного производства). Полиномиальные функции характеризуются отсутствием явной зависимости приростов факторных переменных от значений результативной переменной
Общий вид полинома
Чаще всего в эконометрическом моделировании применяется полином второго порядка (параболическая функция), характеризующий равноускоренное развитие процесса (равноускоренный рост или снижение уровней).:
Полиномы, чей порядок выше четвёртого, в эконометрических исследованиях обычно не применяются, потому что они не способны точно отразить существующую зависимость между результативной и факторными переменными.
Гиперболическая функция характеризует нелинейную зависимость между результативной переменной
Гиперболоид или гиперболическая функция имеет вид:
Данная гиперболическая функция является равносторонней.
В качестве примера эконометрической модели в виде гиперболической функции можно привести модель зависимости затрат на единицу продукции от объёма производства.
Неизвестные параметры
Для того чтобы оценить неизвестные параметры
Рассмотрим процесс линеаризации полиномиальной функции порядка
Заменим все факторные переменные на линейные следующим образом:
Тогда модель множественной регрессии можно записать в виде:
Рассмотрим процесс линеаризации гиперболической функции:
Данная функция может быть приведена к линейному виду путём замены нелинейной факторной переменной
Следовательно, модели регрессии, нелинейные относительно включенных в анализ независимых переменных, но линейные по оцениваемым параметрам, могут быть преобразованы к линейному виду. Это позволяет применять к линеаризованным моделям регрессии классические методы определения неизвестных параметров модели (метод наименьших квадратов), а также методы проверки различных гипотез.
40. Модели регрессии, нелинейные по оцениваемым коэффициентам
Нелинейными
по оцениваемым параметрам моделями регрессииназываются модели, в которых результативная переменнаяК моделям регрессии, нелинейными по оцениваемым параметрам, относятся:
1) степенная функция:
2) показательная или экспоненциальная функция:
3) логарифмическая парабола:
4) экспоненциальная функция:
5) обратная функция:
6) кривая
7) логистическая функция или кривая
Кривыми насыщения
называются показательная, логарифмическая и экспоненциальная функции, т. к. будущий прирост результативной переменной зависит от уже достигнутого уровня функции.Кривые насыщения применяются для характеристики явлений и процессов, величина роста которых является ограниченной величиной (например, в демографии).
Определение. S-образными кривыми называются кривая Гомперца и кривая Перла-Рида. Данные кривые представляют собой кривые насыщения с точкой перегиба.