S-образные кривые применяются для характеристики явлений, включающий в себя два последовательных процесса – ускорения и замедления достигнутого уровня развития. Подобные явления характерны для демографии, страхования и других областей.
Модели регрессии, нелинейные по оцениваемым коэффициентам, делятся на два класса:
1) модели регрессии, которые можно с помощью преобразований привести к линейному виду;
2) модели регрессии, которые невозможно привести к линейному виду.
Рассмотрим первый класс моделей регрессии.
Показательная функция вида
является нелинейной по коэффициенту
Данную модель можно привести к линейному виду с помощью логарифмирования:
Для более наглядного представления данной модели регрессии воспользуемся методом замен:
В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:
Таким образом, можно сделать вывод, что рассмотренная показательная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.
Другим примером моделей регрессии первого класса является степенная функция вида:
Данная модель характеризуется тем, что случайная ошибка
Данную модель можно привести к линейному виду с помощью логарифмирования:
Для более наглядного представления данной модели регрессии воспользуемся методом замен:
В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:
Таким образом, можно сделать вывод, что рассмотренная степенная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.
Рассмотрим второй класс моделей регрессии, нелинейных по оцениваемым коэффициентам.
Показательная функция вида
относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка
Степенная функция вида
относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка
Таким образом, для оценки неизвестных параметров моделей регрессии, которые нельзя привести к линейному виду, нельзя применять классический метод наименьших квадратов. В этом случае используются итеративные процедуры оценивания (квази-ньютоновский метод, симплекс-метод, метод
41. Модели регрессии с точками разрыва
Определение. Моделями регрессии с точками разрыва называются модели, которые нельзя привести к линейной форме, т. е. внутренне нелинейные модели регрессии.
Модели регрессии делятся на два класса:
1) кусочно-линейные модели регрессии;
2) собственно модели регрессии с точками разрыва.
Кусочно-линейные модели регрессии характеризуются тем, что вид зависимости между результативной переменной и факторными переменными может быть неодинаков в различных областях значений факторных переменных.
В качестве примера кусочно-линейной модели регрессии рассмотрим регрессионную зависимость показателя себестоимости единицы произведённой промышленной продукции (результативная переменная) от показателя объёма промышленного производства за месяц (факторная переменная). Исследуемые показатели связаны линейной зависимостью, т. к. с увеличением показателя объема промышленного производства показатель себестоимости единицы произведённой промышленной продукции снижается, и наоборот.
Но не всегда данная зависимость носит линейный характер. Если основные фонды, которые используются при производстве данной промышленной продукции, являются изношенным, то с увеличением показателя объема промышленного производства показатель себестоимости единицы произведённой промышленной продукции может также увеличиваться.
При условии, что изношенные основные фонды применяются для производства промышленной продукции до того момента, когда объём промышленного производства достигнет заранее определённого значения, можно построить кусочно-линейную модель регрессии. Предположим, что объём промышленного производства равен 500 единицам продукции. Тогда модель примет вид:
где