Основная гипотеза
Альтернативная гипотеза H1 предполагает непостоянство дисперсиий случайных ошибок в различных наблюдениях, т. е. присутствие в модели условия гетероскедастичности:
Гетероскедастичность остатков модели регрессии может привести к негативным последствиям:
1) оценки неизвестных коэффициентов нормальной линейной модели регрессии являются несмещёнными и состоятельными, но при этом теряется свойство эффективности;
2) существует большая вероятность того, что оценки стандартных ошибок коэффициентов модели регрессии будут рассчитаны неверно, что конечном итоге может привести к утверждению неверной гипотезы о значимости коэффициентов регрессии и значимости модели регрессии в целом.
58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии.
Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии.
Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью парной регрессии вида:
Неизвестные коэффициенты
После этого необходимо рассчитать остатки модели регрессии по формуле:
Полученные остатки модели регрессии возводятся в квадрат:
Далее для обнаружения гетероскедастичности остатков данной модели регрессии необходимо рассчитать коэффициент Спирмена между квадратами регрессионных остатков
и значениями факторной переменной
Коэффициент Спирмена является аналогом парного коэффициента корреляции, однако, с его помощью можно оценить тесноту зависимости не только между количественными, но и между количественными и качественными переменными.
В качестве зависимой переменной будет выступать квадрат остатков модели регрессии
в качестве независимой переменной – значения факторной переменной
Значения независимой переменной xi ранжируется и располагается по возрастанию. Ранги обозначаются как
обозначаемые как
Коэффициент Спирмена рассчитывается по формуле:
где
Далее необходимо проверить значимость вычисленного коэффициента Спирмена.
При проверке значимости коэффициента Спирмена выдвигается основная гипотеза о его незначимости:
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента.
Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента.
Критическое значение t-критерия
Наблюдаемое значение t-критерия при проверке основной гипотезы вида
При проверке гипотез возможны следующие ситуации.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е.
существует взаимосвязь, т. е. в модели присутствует гетероскедастичность.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е.
Если тест Глейзера проводился для линейной модели множественной регрессии, то при принятии основной гипотезы делается вывод о том, что гетероскедастичность не зависит от выбранной переменной
59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
Основным условием проведения теста Голдфелда-Квандта является предположение о нормальном законе распределения случайной ошибки i модели регрессии.
Рассмотрим применение данного теста на примере линейной модели множественной регрессии.
Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью множественной регрессии.
В модели множественной регрессии выбирается независимая переменная
На следующем этапе значения независимой переменной