где
Частные коэффициенты корреляции первого порядка для модели трёхфакторной регрессии строятся точно так же, как и для модели двухфакторной регрессии.
Частные коэффициенты корреляции второго порядка для модели трёхфакторной регрессии строятся следующим образом.
Частный коэффициент корреляции между результативной переменной
Частный коэффициент корреляции между результативной переменной
Частный коэффициент корреляции между результативной переменной
Частные коэффициенты корреляции второго порядка построены с использованием частных коэффициентов корреляции первого порядка.
Следовательно, частный коэффициент корреляции порядка
При анализе модели множественной регрессии с
Частные коэффициенты корреляции, вычисленные по рекуррентным формулам, изменяются в пределах от минус единицы до плюс единицы.
32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
Помимо рекуррентных формул, которые используются для построения частных коэффициентов корреляции для моделей множественной регрессии, возможно также построение этих показателей с помощью показателя остаточной дисперсии.
В случае линейной модели парной регрессии показатель остаточной дисперсии определяется по формуле:
где
– это оценка модели парной регрессии с независимой переменной
Если в линейную модель парной регрессии включить новую независимую переменную
где
– это оценка модели регрессии с двумя независимыми переменными
Вне зависимости от качества построенной линейной модели двухфакторной регрессии будет справедливо неравенство вида:
Тогда величину
можно охарактеризовать как долю сокращения остаточной дисперсии за счёт включения в модель регрессии новой независимой переменной
Для линейной модели двухфакторной регрессии частный коэффициент корреляции между независимой переменной
Для модели множественной регрессии с n независимыми переменными частный коэффициент корреляции (
Показатель остаточной дисперсии результативной переменной и коэффициент множественной детерминации связаны отношением:
Если в формуле частного коэффициента корреляции выразить остаточную дисперсию результативной переменной с помощью коэффициента множественной детерминации, то для модели множественной регрессии с
Частные коэффициенты корреляции, вычисленные через показатель остаточной дисперсии или коэффициент множественной детерминации, изменяются в пределах от нуля до единицы.
Частный коэффициент корреляции для модели множественной регрессии в общем случае характеризует степень зависимости между результативной переменной и одной из факторных переменных при постоянном значении остальных независимых переменных, включённых в модель регрессии.
33. Коэффициент множественной корреляции. Коэффициент множественной детерминации
Если частные коэффициенты корреляции модели множественной регрессии оказались значимыми, т. е. между результативной переменной и факторными модельными переменными действительно существует корреляционная взаимосвязь, то в этом случае построение множественного коэффициента корреляции считается целесообразным.
С помощью множественного коэффициента корреляции характеризуется совокупное влияние всех факторных переменных на результативную переменную в модели множественной регрессии.