На основании выборочных данных вычисляются эмпирические коэффициенты асимметрии и эксцесса по формулам:
Если вычисленные коэффициенты близки к нулю, то можно сделать вывод, что ряд остатков подчиняется нормальному закону распределения.
В дополнение к выборочным коэффициентам асимметрии и эксцесса рассчитывают показатели среднеквадратических отклонений данных коэффициентов по формулам:
Если одновременно выполняются следующие неравенства:
то гипотеза о нормальном характере распределения случайной компоненты принимается. Если хотя бы одно из указанных неравенств нарушается, то гипотеза о нормальном распределении остатков отвергается.
Помимо адекватности выбранной модели, необходимо охарактеризовать её точность. Наиболее простым критерием точности модели является относительная ошибка, рассчитываемая по формуле:
Если относительная ошибка равна менее, чем 13 %, то точность подобранной модели признаётся удовлетворительной.
76. Сезонные и циклические компоненты временного ряда
Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:
1) метод вычисления сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда;
2) метод применения сезонных фиктивных переменных;
3) метод анализа сезонных колебаний с помощью автокорреляционной функции;
4) метод, основанный на использовании одномерных рядов Фурье.
В связи с тем, что моделирование сезонных и циклических колебаний происходит аналогично, применение данных методов мы будем рассматривать на примере моделирования сезонных колебаний.
Аддитивная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний не меняется во времени:
где
Мультипликативная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний изменяется во времени:
Предположим, что задача состоит в исследовании временного ряда
Прежде чем рассчитывать сезонную компоненту, исходный временной ряд необходимо выровнять. Для этого применяются методы механического выравнивания, к которым относятся:
1) метод скользящих средних;
2) метод экспоненциального сглаживания;
3) метод медианного сглаживания и др.
Результатом процедуры сглаживания будет временной ряд выровненных значений
не содержащих сезонной компоненты.
Если временной ряд представлен аддитивной моделью, то в качестве сезонной компоненты используется показатель абсолютного отклонения –
Если временной ряд представлен мультипликативной моделью, то в качестве сезонной компоненты используется индекс сезонности –
Показатель абсолютного отклонения в i-том сезоне рассчитывается как среднее арифметическое из отклонений фактического и выровненного уровней временного ряда:
Индекс сезонности в i-том сезоне рассчитывается как среднее арифметическое из отношений фактического уровня временного ряда к выровненному:
Если при построении аддитивной модели временного ряда сумма всех абсолютных отклонений не равна нулю, то рассчитываются скорректированные значения сезонных компонент по формуле:
где
На следующем этапе построения модели временного ряда осуществляется расчёт трендовой компоненты с помощью метода аналитического выравнивания функциями времени или кривыми роста. Данный метод выравнивания применяют не к исходному временному ряду, а к временному ряду с исключённой сезонной компонентой. При этом уровни исходного временного ряда корректируются на величину сезонной компоненты следующим образом:
1) для аддитивной модели из исходных уровней вычитаются показатели абсолютных отклонений
2) для мультипликативной модели уровни исходного временного ряда делятся на индексы сезонности
77. Сезонные фиктивные переменные
Метод сезонных фиктивных переменных относится к методам моделирования сезонных компонент временного ряда. Суть данного метода заключается в построении модели регрессии, которая наряду с фактором времени включает сезонные фиктивные переменные.
Фиктивной переменной
(dummy variable) называется атрибутивный или качественный фактор, представленный с помощью определённого цифрового кода.