Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т.е.
С помощью метода или теста Чоу проверяется основная гипотеза о стабильности временного ряда. Если ряд характеризуется нестабильной тенденцией, то с определённого момента времени
Следовательно, весь временной ряд можно разделить на две подвыборки: первая подвыборка содержит значения временного ряда до переломного момента
Будем считать, что весь временной ряд представляет собой модель регрессии модель без ограничений. Обозначим данную модель через
Введём следующие обозначения:
– сумма квадратов остатков для наблюдений первой подвыборки в общей модели регрессии;
– сумма квадратов остатков для наблюдений второй подвыборки в общей модели регрессии.
Для частных моделей регрессии справедливы следующие неравенства:
Условие
Основная гипотеза формулируется как утверждение о структурной стабильности тенденции общего временного ряда.
Альтернативная или обратная гипотеза формулируется как утверждение о структурной нестабильности тенденции общего временного ряда
Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора.
Наблюдаемое значение F-критерия сравнивают с критическим значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора.
Критическое значение F-критерия Фишера определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости а и двух степеней свободы
Наблюдаемое значение F-критерия рассчитывается по формуле:
где
При проверке выдвинутых гипотез возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е.
74. Аналитический вид тренда
Метод аналитического выравнивания с помощью функций времени или кривых роста является основным методом представления тренда в аналитическом виде, используемым в эконометрике. Суть данного метода заключается в аппроксимации временного ряда определённой формой регрессионной кривой. При этом наиболее проблематичным является вопрос о выборе функции тренда.
Выбор выравнивающей кривой может осуществляться на основании заранее заданных критериев, к которым относятся:
1) множественный коэффициент детерминации;
2) сумма квадратов отклонений наблюдаемых значений временного ряда от теоретических значений (рассчитанных с помощью функции тренда).
Методом конечных разностей
называется метод, позволяющий подобрать подходящую форму кривой. Его применение возможно в том случае, если временной ряд содержит равностоящие друг от друга уровни.Конечной разностью первого порядка
(разностным оператором первого порядка) называется разность между соседними уровнями временного ряда:Разностным оператором второго порядка
(конечной разностью второго порядка) называется разность между соседними разностными операторами первого порядка: