Читаем Ответы на экзаменационные билеты по эконометрике полностью

Систематические составляющие характеризуются тем, что они могут одновременно присутствовать во временном ряду.

Случайной составляющей называется случайный шум или ошибка, которая воздействует на временной ряд нерегулярно.

К основным причинам, по которым возникает случайный шум, относят факторы резкого и внезапного действия, а также действия текущих факторов.

Катастрофическими колебаниями называется случайный шум, в основе возникновения которого лежат факторы резкого и внезапного действия.

Шум, в основе возникновения которого лежит действие текущих факторов, может быть связан также с ошибками наблюдений.

Отдельный уровень временного ряда обозначается как yt. Его можно представить в виде функции от основных компонент временного ряда следующим образом:

yt=f(T,S,C,ε),

где T – это трендовая компонента,

S – это сезонная компонента,

C – это циклическая компонента,

ε – случайный шум.

Существует несколько основных моделей временных рядов, к которым относятся:

1) аддитивная модель временного ряда, в которой компоненты представляют собой слагаемые:

yt=Tt+St+Ct+εt;

2) мультипликативная модель временного ряда, в которой компоненты представляют собой сомножители:

yt=Tt*St*Ct*εt;

3) комбинированная модель временного ряда:

yt=Tt*St*Ct+εt.

71. Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда

Наличие во временном ряду трендовой компоненты не всегда можно определить с помощью графика. Поэтому для выявления этой компоненты используются специальные критерии проверки гипотезы о существовании тренда во временном ряду.

Рассмотрим следующие критерии проверки гипотезы о существовании тренда во временном ряду:

1) критерий, основанный на сравнении средних уровней временного ряда;

2) критерий «восходящих и нисходящих» серий;

3) критерий серий, основанный на медиане выборочной совокупности.

При проверке гипотезы о существовании тренда во временном ряду с помощью критерия, основанного на сравнении средних уровней, временной ряд из N наблюдений делится на две равные части. Объём первой части yi равен

и объём второй части yj равен

Обе части временного ряда рассматриваются как самостоятельные выборочные совокупности, подчиняющиеся нормальному закону распределения.

Для каждой из выборок yi и yj рассчитываются следующие выборочные характеристики:

1) средние арифметические значения:

2) выборочные дисперсии:

При проверке предположения о наличии во временном ряду трендовой компоненты выдвигается основная гипотеза о равенстве генеральных средних для двух образованных выборочных совокупностей:

H0:μi=μj.

Альтернативной или обратной является гипотеза о неравенстве генеральных средних для двух образованных выборочных совокупностей:

H0:μi≠μj.

Основная гипотеза вида H0:μi=μj проверяется при справедливости предположения о равенстве генеральных дисперсий:

Гипотеза о равенстве дисперсий проверяется с помощью F-критерия Фишера.

Наблюдаемое значение F-критерия сравнивают с критическим значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора.

Критическое значение F-критерия Фишера определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости а и двух степеней свободы

k1=n–1 и k2=N–n–2.

Наблюдаемое значение F-критерия при проверке основной гипотезы вида  

определяется по формуле:


при условии, что

При проверке выдвинутых гипотез возможны следующие ситуации.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл>Fкрит, то основная гипотеза отклоняется.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл≤Fкрит, то основная гипотеза принимается.

Гипотеза о равенстве генеральных средних проверяется с помощью t-критерия Стьюдента.

Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента.

Критическое значение t-критерия tкрит(а,N–2) определяется по таблице распределения Стьюдента, где а – уровень значимости, (N–2) – число степеней свободы.

Наблюдаемое значение t-критерия при проверке основной гипотезы вида H0:μi=μj определяется по формуле:

При проверке гипотез возможны следующие ситуации.

Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. tнабл>tкрит, то основная гипотеза отвергается, и генеральные средние двух выборок не равны между собой. Следовательно, в исходном временном ряду присутствует трендовая компонента.

Перейти на страницу:

Похожие книги