От точности оценки матрицы ковариаций Ω случайных ошибок модели регрессии зависит удовлетворение оценок неизвестных коэффициентов, полученных доступным обобщённым или взвешенным методом наименьших квадратов, основным статистическим свойствам – несмещённости, состоятельности и эффективности.
67. Модели регрессии с переменной структурой. Фиктивные переменные
При построении модели регрессии может возникнуть ситуация, когда в неё необходимо включить не только количественные, но и качественные переменные (например, возраст, образование, пол, расовую принадлежность и др.).
Фиктивной переменной
(dummy variable) называется атрибутивный или качественный фактор, представленный посредством определённого цифрового кода.Наиболее наглядным примером применения фиктивных переменных является модель регрессии, отражающая проблему разрыва в заработной плате у мужчин и женщин.
Предположим, что на основе собранных данных была построена модель регрессии, отражающая зависимость заработной платы рабочих
Однако данная модель регрессии не может в полной мере охарактеризовать вариацию результативной переменной. Поэтому в модель необходимо ввести дополнительный фактор, например пол, на основании предположения о том, что у мужчин в среднем заработная плата выше, чем у женщин. В связи с тем, что переменная пола является качественной, её необходимо представить в виде фиктивной переменной следующим образом:
С учётом новой фиктивной переменной модель регрессии примет вид:
где
Моделью регрессии с переменной структурой
называется модель регрессии, которая включает в качестве факторной переменной фиктивную переменную.Рассмотрим модель регрессии, характеризующую зависимость переменной размера заработной платы
Следовательно, качественная переменная «образование» может быть представлена в виде:
Модель регрессии, характеризующая зависимость переменной размера заработной платы
Моделью регрессии без ограничений
(unrestricted regression) называется модель регрессии, в которую включены все фиктивные переменные.Базисной моделью или регрессией с ограничениями
(restricted regression) называется модель регрессии, в которой все значения фиктивных переменных равны нулю.Для нашего примера модель регрессии вида
Для модели регрессии без ограничений можно также построить частные регрессии. Например, частная модель регрессии переменной заработной платы работников со средним специальным образованием от переменной стажа:
где
Частная модель регрессии переменной заработной платы работников с высшим образованием от переменной стажа:
где
Оценки неизвестных коэффициентов моделей регрессии с переменной структурой рассчитываются с помощью классического метода наименьших квадратов.
68. Тест Чоу
Предположим, что на основе собранных данных была построена модель регрессии. Перед исследователем стоит задача о том, стоит ли вводить в полученную модель дополнительные фиктивные переменные или базисная модель является оптимальной. Данная задача решается с помощью метода или теста Чоу. Он применяется в тех ситуациях, когда основную выборочную совокупность можно разделить на части или подвыборки. В этом случае можно проверить предположение о большей эффективности подвыборок по сравнению с общей моделью регрессии.