Если наблюдаемое значение критерия Дарбина-Уотсона находится между верхней и нижней критическими границами, т. е.
Если коэффициент автокорреляции является отрицательной величиной, то при проверке гипотез возможно возникновение следующих ситуаций.
Если наблюдаемое значение критерия Дарбина-Уотсона больше критической величины
Если наблюдаемое значение критерия Дарбина-Уотсона меньше критической величины 4 – d2, т. е.
Если наблюдаемое значение критерия Дарбина-Уотсона находится в критическом интервале между величинами
63. Устранение автокорреляции остатков модели регрессии
В связи с тем, что наличие в модели регрессии автокорреляции между остатками модели может привести к негативным результатам всего процесса оценивания неизвестных коэффициентов модели, автокорреляция остатков должна быть устранена.
Устранить автокорреляцию остатков модели регрессии можно с помощью включения в модель автокорреляционного параметра, однако на практике данный подход реализовать весьма затруднительно, потому что оценка коэффициента автокорреляции является величиной заранее неизвестной.
Авторегрессионной схемой
первого порядка называется метод устранения автокорреляции первого порядка между соседними членами остаточного ряда в линейных моделях регрессии либо моделях регрессии, которые можно привести к линейному виду.На практике применение авторегрессионной схемы первого порядка требует априорного знания величины коэффициента автокорреляции. Однако в связи с тем, что величина данного коэффициента заранее неизвестна, в качестве его оценки рассчитывается выборочный коэффициент остатков первого порядка
Выборочный коэффициент остатков первого порядка
В общем случае коэффициент автокорреляции порядка
где
– среднее значение исходного временного ряда.
Предположим, что на основе собранных наблюдений была построена линейная парная модель регрессии:
Рассмотрим применение авторегрессионной схемы первого порядка на примере данной модели.
Исходная линейная модель парной регрессии с учётом процесса автокорреляции остатков первого порядка в момент времени t может быть представлена в виде:
εt=ρεt-1+νt,
где
Модель регрессии в момент времени (
Если модель регрессии в момент времени (
Для более наглядного представления преобразованной модели воспользуемся методом замен:
В результате преобразованная модель регрессии примет вид:
В преобразованной модели регрессии случайная ошибка βt не подвержена процессу автокорреляции, поэтому можно считать автокорреляционную зависимость остатков модели устранённой.
Авторегрессионную схему первого порядка можно применить ко всем строкам матрицы данных
Тогда оценки неизвестных коэффициентов преобразованной модели регрессии (4) можно рассчитать с помощью классического метода наименьших квадратов:
Оценки коэффициентов исходной модели регрессии (1) определяются по формулам:
В результате оцененная модель регрессии будет иметь вид:
64. Методы Кохрана-Оркутта и Хилдрета-Лу оценки коэффициента автокорреляции
Помимо вычисления выборочного коэффициента автокорреляции остатков оценку автокорреляционного коэффициента β можно рассчитать методом Кохрана-Оркутта.