Если для устранения гетероскедастичности был использован метод взвешивания, то в результате мы получим взвешенную модель регрессии с весами
Предположим, что на основе имеющихся данных была построена линейная модель парной регрессии, в которой было доказано наличие гетероскедастичности остатков
Рассмотрим подробнее процесс взвешивания для данной модели регрессии.
Разделим каждый член модели регрессии на среднеквадратическое отклонение случайной ошибки
В общем виде процесс взвешивания для линейной модели парной регрессии выглядит следующим образом:
Для более наглядного представления полученной модели регрессии воспользуемся методом замен:
В результате получим преобразованный вид взвешенной модели регрессии:
Преобразованная взвешенная модель регрессии является двухфакторной моделью регрессии.
Дисперсию случайной ошибки взвешенной модели регрессии можно рассчитать по формуле:
Полученный результат доказывает постоянство дисперсий случайных ошибок преобразованной модели регрессии, т. е. о выполнении условия гомоскедастичности.
Главный недостаток метода взвешивания заключается в необходимости априорного знания среднеквадратических отклонений случайных ошибок модели регрессии. По той причине, что в большинстве случаев данная величина является неизвестной, приходится использовать другие методы, в частности методы коррекции гетероскедастичности.
Определение
. Суть методов коррекции гетероскедастичности состоит в определении оценки ковариационной матрицы случайных ошибок модели регрессии:Для определения оценок
используется метод Бреуше-Пайана, который реализуется в несколько этапов:
1) после получения оценок неизвестных коэффициентов модели регрессии рассчитывают остатки
2) рассчитывают оценку дисперсии остатков модели регрессии по формуле:
3) строят взвешенную модель регрессия, где весами являются оценка дисперсии остатков модели регрессии
4) если при проверке гипотез взвешенная модель регрессии является незначимой, то можно сделать вывод, что оценки матрицы ковариаций
Если вычислены оценки дисперсий остатков модели регрессии, то в этом случае можно использовать доступный обобщённый или взвешенный методы наименьших квадратов для вычисления оценок коэффициентов модели регрессии, которые отличаются только оценкой
Если гетероскедастичность остатков не поддаётся корректировке, то можно рассчитать оценки неизвестных коэффициентов модели регрессии с помощью классического метода наименьших квадратов, но затем подвергнуть корректировке ковариационную матрицу оценок коэффициентов
т. к. условие гетероскедастичности приводит к увеличению данной матрицы.
Ковариационная матрица оценок коэффициентов
может быть скорректирована методом Уайта:
где
– квадрат остатков модели регрессии;
– транспонированная i-тая строка матрицы данных
Корректировка ковариационной матрицы оценок коэффициентов
методом Уайта приводит к изменению t-статистики и доверительных интервалов для коэффициентов регрессии.
61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
Автокорреляцией
называется корреляция, возникающая между уровнями изучаемой переменной. Это корреляция, проявляющаяся во времени. Наличие автокорреляции чаще всего характерно для данных, представленных в виде временных рядов.Автокорреляцией остатков модели регрессии
ei (или случайных ошибок регрессии моделиВременным лагом
называется величина сдвига между рядами остатков модели регрессии.Величина временного лага определяет порядок коэффициента автокорреляции. Например, если между остатками en и en-1 существует корреляционная зависимость, то временной лаг равен единице. Следовательно, данную корреляционную зависимость можно охарактеризовать с помощью коэффициента автокорреляции первого порядка между рядами остатков e1…en-1 и
Одно из условий, которое учитывается при построении нормальной линейной модели регрессии, заключается в некоррелированности случайных ошибок модели регрессии, т. е. ковариация случайных ошибок любых двух разных наблюдений равна нулю:
Если в модели регрессии случайные ошибки коррелированны между собой, то данное условие нарушается.
Последствия, к которым может привести наличие в модели регрессии автокорреляции остатков, совпадают с последствиями, к которым может привести наличие в модели регрессии гетероскедастичности:
1) оценки неизвестных коэффициентов нормальной линейной модели регрессии являются несмещёнными и состоятельными, но при этом теряется свойство эффективности;