При построении нормальной линейной модели регрессии учитываются следующие условия, касающиеся случайной ошибки модели регрессии:
6) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
7) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:
8) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):
Второе условие
означает гомоскедастичность (homoscedasticity – однородный разброс) дисперсий случайных ошибок модели регрессии.
Под гомоскедастичностью
понимается предположение о том, что дисперсия случайной ошибкиНо на практике предположение о гомоскедастичности случайной ошибки βi или остатков модели регрессии
Под гетероскедастичностью
(heteroscedasticity – неоднородный разброс) понимается предположение о том, что дисперсии случайных ошибок являются разными величинами для всех наблюдений, что означает нарушение второго условия нормальной линейной модели множественной регрессии:Гетероскедастичность можно записать через ковариационную матрицу случайных ошибок модели регрессии:
Тогда можно утверждать, что случайная ошибка модели регрессии
где
Если дисперсии случайных ошибок
модели регрессии известны заранее, то проблема гетероскедастичности легко устраняется. Однако в большинстве случаев неизвестными являются не только дисперсии случайных ошибок, но и сама функция регрессионной зависимости
Для обнаружения гетероскедастичности остатков модели регрессии необходимо провести их анализ. При этом проверяются следующие гипотезы.
Основная гипотеза
Альтернативная гипотеза H1 предполагает непостоянство дисперсиий случайных ошибок в различных наблюдениях, т. е. присутствие в модели условия гетероскедастичности:
Гетероскедастичность остатков модели регрессии может привести к негативным последствиям:
1) оценки неизвестных коэффициентов нормальной линейной модели регрессии являются несмещёнными и состоятельными, но при этом теряется свойство эффективности;
2) существует большая вероятность того, что оценки стандартных ошибок коэффициентов модели регрессии будут рассчитаны неверно, что конечном итоге может привести к утверждению неверной гипотезы о значимости коэффициентов регрессии и значимости модели регрессии в целом.
58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии.
Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии.
Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью парной регрессии вида:
Неизвестные коэффициенты
После этого необходимо рассчитать остатки модели регрессии по формуле:
Полученные остатки модели регрессии возводятся в квадрат:
Далее для обнаружения гетероскедастичности остатков данной модели регрессии необходимо рассчитать коэффициент Спирмена между квадратами регрессионных остатков
и значениями факторной переменной
Коэффициент Спирмена является аналогом парного коэффициента корреляции, однако, с его помощью можно оценить тесноту зависимости не только между количественными, но и между количественными и качественными переменными.
В качестве зависимой переменной будет выступать квадрат остатков модели регрессии
в качестве независимой переменной – значения факторной переменной
Значения независимой переменной xi ранжируется и располагается по возрастанию. Ранги обозначаются как
обозначаемые как
Коэффициент Спирмена рассчитывается по формуле:
где
Далее необходимо проверить значимость вычисленного коэффициента Спирмена.
При проверке значимости коэффициента Спирмена выдвигается основная гипотеза о его незначимости:
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента.