Качество построенной логит-регрессии или пробит-регрессии характеризуется с помощью псевдо коэффициента детерминации, который рассчитывается по формуле:
Если значение данного коэффициента близко к единице, то модель регрессии считается адекватной реальным данным.
56. Метод максимума правдоподобия
Метод максимума правдоподобия (maximum likelihood function) применяется для определения неизвестных коэффициентов модели регрессии и является альтернативой методу наименьших квадратов. Суть данного метода состоит в максимизации функции правдоподобия или её логарифма.
Общий вид функции правдоподобия:
где
– это геометрическая сумма, означающая перемножение вероятностей по всем возможным случаям внутри скобок.
Предположим, что на основании полученных данных была построена модель регрессии бинарного выбора, где результативная переменная представлена с помощью латентной переменной:
Следовательно, вероятность события, что результативная переменная
Вероятность события, что результативная переменная
В связи с тем, что для вероятностей считается справедливым равенство вида:
функция правдоподобия может быть записана как геометрическая сумма вероятностей наблюдений:
Для логит-регрессии и пробит-регрессии функция правдоподобия строится через сумму натуральных логарифмов правдоподобия следующим образом:
Оценки неизвестных параметров логит-регрессии и пробит-регрессии определяются с помощью максимизации функции правдоподобия:
Для определения максимума функции
С помощью преобразований данной системы уравнений переходим к системе нормальных уравнений, решениями которой и будут оценки максимального правдоподобия
Прежде, чем использовать пробит-регрессию и логит-регрессию для прогнозирования или анализа, необходимо проверить значимость вычисленных коэффициентов пробит и логит регрессий и моделей регрессии в целом. Подобная проверка осуществляется с помощью величины
При проверке значимости коэффициентов пробит или логит-регрессии выдвигается основная гипотеза о незначимости данных коэффициентов:
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Для проверки выдвинутых гипотез рассчитывается величина
Критическое значение
При проверке гипотез возможны следующие ситуации:
Если величина
то основная гипотеза отвергается, и коэффициенты модели регрессии являются значимыми. Следовательно, модель пробит или логит-регрессии также является значимой.
Если величина
то основная гипотеза принимается, и коэффициенты модели регрессии являются незначимыми. Следовательно, модель пробит или логит-регрессии также является незначимой.
Оценки неизвестных коэффициентов модели регрессии, полученные методом максимума правдоподобия, удовлетворяют следующему утверждению.
Пусть
Докажем данное утверждение на примере модели логит-регрессии.
Функция максимального правдоподобия для модели логит-регрессии имеет вид:
Продифференцируем полученную функцию по параметру
Следовательно, утверждение можно считать доказанным.
В том случае, если для модели регрессии справедливы предпосылки нормальной линейной модели регрессии, то оценки неизвестных коэффициентов, полученные с помощью метода наименьших квадратов, и оценки, полученные с помощью метода максимума правдоподобия, будут совпадать.
57. Гетероскедастичность остатков модели регрессии
Случайной ошибкой
называется отклонение в линейной модели множественной регрессии:В связи с тем, что величина случайной ошибки модели регрессии является неизвестной величиной, рассчитывается выборочная оценка случайной ошибки модели регрессии по формуле:
где
Термин гетероскедастичность в широком смысле понимается как предположение о дисперсии случайных ошибок модели регрессии.