Физиологический метод исследования — четвертый по счету, но один из важнейших путей изучения механизмов памяти. Работы И. П. Павлова подчеркнули роль условного рефлекса как физиологического явления, в основе которого лежит фиксация следов в мозгу, пригодного для использования в качестве индикатора и функции памяти. В связи с этим экспериментальное исследование памяти базируется на изучении условных рефлексов, скорости их выработки и длительности сохранения. Такого рода исследования проводятся на разных видах животных с неповрежденным мозгом, а также при различных видах воздействия на отдельные структуры мозга, в том числе при их раздражении и разрушении. Эти исследования позволяют изучать механизмы памяти, связанные с деятельностью сложной функциональной системы. Они дают представление о роли различных структур мозга и их функционального состояния в осуществлении функции памяти и ее нарушениях. Это макрофизиологический аспект исследований, в отличие от микрофизиологического, занимающегося изучением состояния отдельных нейронов во время запоминания, хранения и воспроизведения информации. Е. Н. Соколов в Московском университете провел исследования на уровне отдельных нейронов у кроликов. Микроэлектрод толщиной в 1―2 микрона ученый подводил к телу нейрона, расположенного в зрительной коре. Затем давалась вспышка света на глаз кролика и регистрировалась с помощью микроэлектрода биоэлектрическая активность этого нейрона. Глаз кролика раздражали вспышки света определенной характеристики. Нейрон вначале реагировал на раздражитель и отвечал характерными биоэлектрическими сдвигами — пачками импульсов. Если характеристики раздражителя длительно оставались неизменными, то нейрон переставал на них отвечать пачками импульсов, а через некоторое время биоэлектрические импульсы не удавалось зарегистрировать совсем. Было высказано предположение, что такое поведение нейрона обусловлено не его утомлением, а только монотонностью раздражителя. С целью проверки этого предположения менялись различные характеристики раздражителя, например интенсивности вспышки света. Нейрон сразу «опознал» новизну раздражителя и начинал опять отвечать характерными пачками импульсов. Если же новый стимул монотонно повторялся, то реакция нейрона на него постепенно исчезала. Эти исследования показали, что уже нейрон способен как бы запоминать стимулы и сравнивать их с информацией, хранящейся в его памяти. Значит, уже на уровне нейронов, т. е. на уровне отдельных элементов мозга, существуют механизмы, обеспечивающие хранение информации.
В Институте биофизики АН СССР О. С. Виноградова с сотрудниками проводят исследования физиологических характеристик отдельных нейронов структур лимбической системы, имеющих непосредственное отношение к процессам регистрации информации, а может быть, и ее воспроизведения. Эти работы выявили неодинаковые свойства нейронов и позволили сделать предположение о делении лимбической системы на два комплекса структур или на две функциональные системы, обеспечивающие разные стороны процесса регистрации информации, что уже изложено в разделе о физиологических механизмах памяти.
Так, исследования, проведенные на нейронном уровне, дали основание предположить наличие сложной функциональной системы, осуществляющей фиксацию в мозгу опыта.
Из физиологических методов исследования мы рассмотрели системный (макрофизиологический) и нейронный (микрофизиологический) подходы к изучению памяти. Следует указать еще на один возможный подход к изучению этого вопроса. Речь идет об исследованиях на субклеточном молекулярном уровне, которые имеют непосредственное отношение к биохимическим исследованиям, подробно изложенным в разделе о биохимических механизмах памяти.
Физиологический метод исследования памяти ограничен главным образом исследованиями на животных. Однако в связи с совершенствованием экспериментальной техники, в частности с возможностью на длительное время вживлять в мозг погружные электроды, появилась возможность проводить исследования и на человеке. Ученые смогли изучить глубинные образования мозга с минимальным повреждением мозговой ткани и наблюдать эффекты раздражения и разрушения их в условиях свободного поведения животных и человека.
Представляют интерес исследования Н. П. Бехтеревой, которая вместе со своими сотрудниками уже много лет занимается лечением больных с поражениями головного мозга, используя метод вживленных в мозг золотых глубинных электродов. Метод позволяет учитывать состояние биоэлектрической активности как отдельных образований мозга, так и групп нейронов. Исследователь как бы раскрывает для себя еще один объективный канал информации (кроме опроса больного), по которому можно получить данные о состоянии различных образований мозга во время процесса запоминания, о их взаимодействии, о последовательности включения различных структур мозга при заучивании, удержании в памяти и воспроизведении предлагаемого больному материала.