Читаем Парадоксы климата. Ледниковый период или обжигающий зной? полностью

Многократно повторяя эту процедуру, можно вычислить последовательность наборов климатических величин, описывающих эволюцию состояния климатической системы. Выбор сетки – набора узлов, в которых нужно определить значения неизвестных (климатических элементов), – всегда компромисс между желанием сократить расстояние между узлами (тем самым улучшив точность расчетов, но значительно увеличив объем вычислений) и возможностями компьютера. Быстродействие в данном случае является определяющим фактором: скажите, кому нужен даже очень точный прогноз на завтра, если получен он будет не ранее, чем послезавтра? Не вдаваясь в подробности, заметим, что в современных глобальных климатических моделях расстояния между узлами составляют 200–300 км по горизонтали и около одного километра по вертикали в атмосфере и 50–200 км и 200–400 м соответственно в океане.

Системы таких алгебраических уравнений огромны, поэтому решать эти уравнения «вручную» невозможно, зато именно такие уравнения подвластны компьютерам. Для этого необходимо лишь представить их на «понятном» компьютеру языке – в виде компьютерной программы. Все остальное определяется только мощностью и быстродействием компьютера.

Задачу компьютеру можно облегчить разными способами, начиная с упрощения исходной системы уравнений (например, исключая описания процессов, которые в рамках поставленной задачи не очень важны), оптимизируя вычислительные алгоритмы (допустим, уменьшая пространственное разрешение модели) и кончая совершенствованием компьютерной программы (учитывая особенности используемого компьютера – количество работающих одновременно процессоров, объем оперативной памяти и т. д.).

Очевидно, определение исходной системы уравнений – задача физика, разработка вычислительного алгоритма – ответственность математика, а создание компьютерной программы – искусство программиста. По этой причине для создания климатической модели, проведения исследований с ее помощью и, главное, анализа полученных модельных результатов одного человека недостаточно. Моделирование климата на современном уровне – задача, с которой способна справиться лишь группа специалистов в указанных областях. По мере развития климатической модели возникает потребность все в новых специалистах – химиках, биологах и др.

Детерминистские (физико-биохимические) модели наиболее часто сегодня используются при изучении климата.

Их можно разделить на три основных класса (в порядке возрастания сложности): (1) простые климатические модели, в частности двумерные (учитывающие только изменения климатических величин с высотой и от полюса до полюса), одномерные (определяющие лишь изменения климатических параметров с высотой) или даже нульмерные (для одной точки пространства); (2) так называемые модели промежуточной сложности и, наконец, (3) сложные трехмерные модели совместной циркуляции атмосферы и океана, занимающие высшую ступень в иерархии климатических моделей.

В настоящее время наиболее мощным и одновременно перспективным инструментом оценки возможных в будущем изменений климата большинство специалистов считают глобальные объединенные модели общей циркуляции атмосферы и океана. Такие модели воспроизводят климатически значимые процессы и обратные связи между ними, благодаря чему позволяют оценивать будущие состояния климатической системы.

Простые модели могут быть использованы сами по себе (например, для оценки эффектов сокращения выбросов в атмосферу в соответствии с международными договоренностями), либо как часть так называемых моделей совокупной оценки, например для анализа стоимости подобных сокращений выбросов. Необходимые для работы простых моделей параметры подбираются или из данных измерений, или из результатов расчетов по более сложным моделям общей циркуляции атмосферы и океана, ледниковых моделей и т. п.

Модели промежуточной сложности не столько уступают моделям общей циркуляции атмосферы и океана в количестве описываемых процессов, сколько превосходят их в степени упрощенности этих описаний. Модели промежуточной сложности полезны в исследованиях отдельных физических процессов, их взаимодействий и обратных связей между ними, они также применяются в исследованиях палеоклимата (климата далеких прошлых эпох). Основным преимуществом моделей, находящихся на более низких ступенях иерархии, является их вычислительная эффективность, что позволяет проводить с простыми моделями и моделями промежуточной сложности многочисленные расчеты при различных дополнительных предположениях, а также осуществлять на их основе вычисления, охватывающие сравнительно долгие (от тысячи лет и более) сроки в истории климата Земли. Использование простых моделей и моделей промежуточной сложности в исследованиях возможных изменений климата в будущем носит вспомогательный характер.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже