int Tag = 2; int WorldSize; int TaskRank; MPI_Status Status; MPI_Init(&argc,&argv) ,-
MPI_Comm_rank (MPI_COMM_WORLD, &TaskRank) ; MPI_Comm_size (MPI_COMM_WORLD, &WorldSize) ; //.. .
switch(TaskRank) {
case 1: multiplies(3.2,4.6); break;
case 2: multiplies(X,Y)
break; //case n:
//.. .
}
}
Поскольку не существует двух задач с одинаковым ранго м,
все ветви в инструкции case листинга 9.2 будут выполнены различны м и MPI-задача м и. Кро м е того, такой тип параметризации м ожно распространить на контейнерные аргу м енты шаблонных функций. Это позволит передавать одной и той же шаблонной функции различные контейнеры объектов, содержащие различные типы объектов. Напри м ер, в листинге 9.3 показана обоб щ енная шаблоннал функция search (). // Листинг 9.3. Использование контейнерных шаблонов в //
качестве аргументов шаблонных функций template bool search(T Key, graph) {
//. . -
locate(Key) //. . .
}
// . . .
MPI_Comm_rank(MPI_COMM_WORLD, &TaskRank); // . . .
switch(TaskRank) {
case 1: {
graph bullion;
search search(«gold», bullion);
}
break; case 2: {
graph Coordinates; search((X,Y),Coordinates);
}
break;
//. . .
В листин г
е 9.3 процесс, у которого TaskRank = 1, выполняет поиск в графе (graph) сименем bullion, содержа щ е м string<^beKTbi, а процесс, у которого TaskRank = 2, выполняет поиск в графе Coordinates, содержа щ е м ко м плексные числа. Мы не должны из м енять функцию search (), чтобы приспособиться к други м дан н ы м или типам данных, да и MPI-програм м а в это м случае и м еет более простую структуру, поскольку м ы м оже м м ногократно использовать шаблонную функцию поиска (search) для прос м отра контейнера graph, содержа щ его данные любого типа. Использование шаблонов значительно упро щ ает 5РМГ>програ мм ирование. Че м более об щ ей м ы делае м MPI-задачу, те м более гибкой она становится. Кро м е того, если некоторый шаблон прошел этап отладки и тестирования, надежность всех построенных на его основе МР1-задач м ожно считать довольно высокой, поскольку все они выполняют одинаковый код. Использование полиморфизмадля реализации MPMD-модели
Полиморфиз м—
одна из основных характеристик объектно-ориентированного програ мм ирования. Если язык претенлует на поддержку объектно-ориентированно г о програ мм ирования, он должен по д держивать инкапсуляцию, нас л едование и по л и м орфиз м. По л и м орфиз м — это способность объекта прини м ать м ножество форм. По л иморфизм по д держивает понятие «один интерфейс — множество реализаций • Пользователь использует одно имя, или интерфейс, реализованный различными способами и различными объекта м и. Чтобы проиллюстрировать концепцию поли м орфизма, рассмотри м класс vehicle, его пото м ков и простую функцию travel (), которая использует класс vehicle. На рис. 9.2 показана простая иерархия нашего се м ейства класса vehicle. Рис. 9.2. Иерархия семейства класса vehicle |
Самолеты, вертолеты, автомобили и подводные лодки — все это потомки класса vehicle (транспортные средства). Объект класса vehicle может заводить мотор, перемещаться вперед, поворачивать вправо, поворачивать влево, останавливаться и пр. В листинге 9.4 демонстрируется, как функция travel () использует объект класca vehicle для совершения компьютеризованного путешестви я.
// Листинг 9.4.
//Функция travel(), которая в качестве параметра использует объект класса vehicle
void travel(vehicle *Transport) {
Transport->startEngine(); Transport->moveForward() ; Transport->turnLeft();
//.. .
Transport-> stop();
}
int main(int argc, char *argv[J) {
//.. . car *Car;
Transportation = new Vechicle(); travel(Car); //.. .
}