Теперь вернёмся к нашей сфере. Движение по квадратному контуру нам отчетливо показало, что конечная точка – это не удвоенная точка полюса, это две
Рассмотрим детальнее ещё два примера обоснования изменения направления вектора при его параллельном переносе. Обратимся ещё раз к примеру, приведённому в работе [4].
"К тензору кривизны, введенному ранее коммутацией вторых ковариантных производных, можно прийти другим путем, рассматривая параллельный перенос произвольного вектора (тензора) по замкнутому контуру. Параллельно перенося произвольный тензор
из произвольной точки A в точку D вдоль различных сторон параллелограмма (см. рис.1.6), можно убедиться в том, что тензор Римана-Кристоффеля определяет разность компонент тензоров, перенесенных из одной точки в другую (близкую) двумя разными путями:
Рис.1.6. Введение тензора кривизны посредством параллельного переноса вектора (тензора) по замкнутому контуру" [4, с.67].
Обратим внимание на то, что рисунок можно рассматривать двояко: как 2-мерное пространство и как пространство 3-мерное. Для наглядности мы внесли небольшие коррективы в оригинальный рисунок: добавили голубоватый фон плоскости перемещения векторов, а для демонстрации трёхмерности пространства продлили вектора под плоскость пространства.
Теперь с целью получения результатов в самом общем виде, рассмотрим оба этих варианта. Поскольку изображение на рисунке направления вектора изменённым мы считаем произволом, так сказать, рисованием "на глазок", рассмотрим другой, аналогичный вариант рисунка, на который нанесём параллели или меридианы, кому какое название больше понравится. Наличие этих линий лишит нас возможности для произвольного выбора направлений векторов. Такой рисунок-аналогию можно представить в следующем вид:
Рис.4. Кривое пространство с точки зрения "плосковитян"
Это 2-мерное пространство, каким его воспринимают так называемые "плосковитяне", то есть, некие условные обитатели этого плоского искривлённого пространства. То, что это пространство искривлённое, видно из нашего трёхмерного пространства. Но его обитатели ничего, разумеется, увидеть не могут. Однако, если они попробуют определить сумму углов треугольника, например, треугольника DEF, то обнаружат, что их сумма меньше 180 градусов. Более того, для некоторых областей они получат вообще немыслимый результат: сумма углов треугольника GHK, наоборот, приближается к 360 градусам. Вместе с тем, в этом кривом пространстве есть и область, в которых треугольник, например, ABC имеет нормальную сумму углов – 180 градусов. Заметим, что подобную картину будут наблюдать и обитатели поверхности сферы: сумма внутренних углов некоторых треугольников у них также может достигать практически 360 градусов.
При измерении внутренних углах