Читаем Патентование изобретений в области высоких и нанотехнологий полностью

В обоих случаях патентование упрощалось тем, что не было необходимости выходить из-под действия первого независимого пункта патента [1]. Это оказалось возможным, так как патентовладелец у всех патентов [1, 2, 3] одно и то же лицо. Дополнительный вывод, который следует из вышесказанного, заключается в том, что при разработке новых направлений целесообразно делать быстрое патентование первичного решения, а потом, ссылаясь на него в качестве прототипа, оформлять следующие патенты. Дело в том, что если пытаться делать сразу зонтичные патенты, то из-за недостатка времени можно лишь слегка обозначить интересные направления, которые в дальнейшем, скорее всего, получат дополнительное развитие, а первичный зонтичный патент в этом случае может помешать дальнейшему патентованию.

Следующим примером объединения известных решений является объединение зондовых, электронных и ионных технологий. Были созданы комплексы, в которых высоковакуумные электронные и ионные устройства дополняются сканирующим зондовым микроскопом [4, 5]. При этом электронный микроскоп брался в неизменном виде, СЗМ в вакуумном исполнении также не было необходимости сильно менять. Технический эффект, который при этом возникает, обычно связан с расширением функциональных возможностей за счет объединения возможностей разных технологий. Кроме этого, в таком объединении чаще всего возникает новый продукт, который может служить аргументом для выдачи патента. Тем не менее, даже в этом случае можно найти элемент, адаптированный под объединенные технологии и подтверждающий новизну и изобретательский уровень комплекса. Этим элементом будет транспортная система, которая должна обеспечить передачу зондов и образцов в зону измерения.

В патенте [6] помимо использования транспортных систем 1 и 2 (рис. 7.4) возникла необходимость совмещения топологических рисунков при переустановке образцов 3. Для этого комплекс был снабжен системой совмещения 4. В комплексе могут использоваться блоки плазменной 5 и температурной 6 очисток, например, зонда 7 и образца 3. При этом модуль нанолокальных технологий 8 сопряжен с модулем формирования структур 9, модулем плазменных технологий 10 и загрузочным модулем 11. В каждом из этих модулей также может присутствовать и очистка, и совмещение, и транспортировка зондов и образцов.

Использование такого количества дополнительного оборудования, с одной стороны, облегчает получения патента. С другой стороны, объем материала при составлении заявок на такие решения может быть огромным. Это необходимо, чтобы доказать выполнение критерия «промышленная применимость». Чтобы объем заявки несколько сократить, можно все модули, входящие в комплекс, изобразить максимально условно и дать взаимосвязь между ними. Те модули, которые претерпевают изменения, выделить в зависимые пункты формулы изобретения и привести на чертежах с конкретизацией их исполнения. Известные модули описать кратко с приведением литературных ссылок на их конкретное исполнение.

Рис. 7.4. Нанотехнологический комплекс НАНОФАБ 100:1, 2 – транспортные системы; 3 – образец; 4 – система совмещения; 5 – модуль плазменной очистки; 6 – модуль температурной счистки; 7 – зонд; 8 – модуль нанолокальных технологий; 9 – модуль формирования структур; 10 – модуль плазменных технологий; 11 – загрузочный модуль

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Металлоискатели
Металлоискатели

Книга предназначена для радиолюбителей, интересующихся вопросами поиска различных металлических предметов с помощью специального оборудования, к которому, в первую очередь, относятся металлоискатели.В соответствующих разделах приведены принципиальные схемы и рисунки печатных плат как простых, так и более сложных конструкций. Даны рекомендации по самостоятельному изготовлению и настройке металлоискателей, а также советы по их практическому применению.Настоящее издание будет полезно не только подготовленным радиолюбителям, но и всем читателям, интересующимся данной темой, поскольку большинство представленных конструкций может изготовить как взрослый, так и школьник, никогда не державший в руках паяльник.

Михаил Васильевич Адаменко

Радиоэлектроника / Технические науки / Образование и наука