Читаем Патентование изобретений в области высоких и нанотехнологий полностью

Литература

1. Патент RU2233490. Сканирующий зондовый микроскоп, совмещенный с устройством механической модификации поверхности объекта. 05.06.2003.

2. Патент RU2287129. Сканирующий зондовый микроскоп, совмещенный с устройством срезания тонких слоев объекта. 27.04.2006.

3. Патент RU2282257. Сканирующий зондовый микроскоп, совмещенный с устройством механической модификации поверхности объекта. 24.08.2005.

4. Патент ЕР1329786. Integrated measuring instrument. 23.07.2003.

5. Патент RU2089968. Комбинированный сканирующий туннельный микроскоп – растровый микроскоп. 31.05.1994.

6. Патент RU2308782. Нанотехнологический комплекс. 06.05.2006.

7. Патент RU2390070. Нанотехнологический комплекс на основе эпитаксиальных и ионных технологий. 12.11.2007.

8. Патент RU2267787. Способ детекции токсичных белков на основе сканирующей зондовой микроскопии. 16.07.2003.

9. Патент RU2206882. Способ определения концентрации и качества распределения высоко дисперсных наполнителей в полимерных композициях. 25.05.2001.

Глава 8 Высокотехнологичные процессы для решения промежуточных задач в сложных комплексах

Помимо изложенных подходов к патентованию высокотехнологичных комплексов может возникнуть ситуация, когда частное решение, необходимое для достижения общей задачи, само по себе патентоспособно и может быть использовано самостоятельно. Проиллюстрируем это следующими примерами. При работе сканирующего зондового микроскопа в условиях высокого или сверхвысокого вакуума обычно требуется финишная подготовка зондов перед взаимодействием их с рабочей поверхностью образца. В качестве зондов часто используются химически заостренные вольфрамовые иглы. Их острия на воздухе, откуда происходит загрузка в вакуумный комплекс, быстро окисляются. Для повышения точности измерения необходимо этот окисел снимать. Традиционный путь заключается в радиационном нагреве острия или обработке его электронным пучком. Такой вариант напрямую запатентовать трудно из-за его известности. Рассмотрим подход к созданию технологии финишного формирования острия и ее патентование. Следует заметить, что саму вольфрамовую иглу без ее промежуточного держателя транспортировать внутри вакуумной камеры практически невозможно. Следовательно, иглу необходимо закреплять в такой держатель. В одном из вариантов держатель был изготовлен из металла. При проведении экспериментов с таким держателем выяснилось, что несмотря на то, что игла на несколько миллиметров выступает за держатель и на первый взгляд поток электронов должен идти на нее, тем не менее, чаще всего он идет именно на держатель. Пришлось держатель изготовить из керамической втулки 1 (рис. 8.1), а иглу 2 закрепить в нем за счет ее изгиба. Когда втулку 1 закрепляли в металлическом манипуляторе 3 и на нерабочий конец 4 иглы 2 подавали от электрода 5 положительное смещение, то с вольфрамовой спирали 6 поток электронов сначала шел на рабочий конец 7 иглы 2. Но через некоторое время испаренный вольфрам иглы 2 и спирали 6 покрывал керамическую втулку 1, она становилась электропроводящей и заземляла электрод 5 через манипулятор 3.

Рис. 8.1. Держатель зонда: 1 – керамическая втулка; 2 – игла; 3 – манипулятор; 4 – нерабочий конец иглы; 5 – электрод; 6 – спираль; 7 – рабочий конец иглы

Рис. 8.2. Экранирующий держатель зонда: 1 – экранирующий буртик; 2 – выступ; 3 – втулка; 4 – игла с U-образной пружиной

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Яу Шинтан

Технические науки / Образование и наука