Вращение к механизму сближения 7 зонда и образца будет передаваться приводом 8, установленным на тонкостенной трубке 9, обеспечивающей минимизацию подвода тепла в зону измерения. Сам СЗМ 10 должен быть закреплен на тонкостенных опорах 11 и иметь вертикальное исполнение, так как сканирующее устройство в СЗМ – обычно пьезотрубка длиной порядка 30 мм и вместе с объектом в отверстие 50 мм ее горизонтально не вставить. Кроме этого большинство сканирующих зондовых микроскопов обычно защищают от вибраций и в данном случае это скорее всего будут длинные пружины 12, на которых висит СЗМ 10. Кроме этого, для обеспечения подвода зонда к образцу (не показаны) необходимо жесткое механическое замыкание привода 8 и механизма сближения 7. Данные ограничения привели к тому, что разработанный прибор чуть ли не во всех деталях повторил уже запатентованную конструкцию [1]. Дело в том, что патентный поиск на начальной стадии разработки не обнаружил это решение, а выявил его на стадии начала изготовления прибора. Пришлось известное решение брать за прототип и его дорабатывать. Возможности доработки нашлись в механизме сближения 7, где не было таких жестких ограничений. Выполнение этого механизма рычажным, а также доработки системы теплозащиты позволили получить патент [2] на частное техническое решение.
Второй пример касается СЗМ, совмещенного с жидкостной ячейкой. В приборах такого рода есть ограничения на условия функционирования, связанные с тем, что зонд и образец должны перемещаться друг относительно друга, но при этом зона измерения должна быть защищена от окружающей среды. Почти единственное решение заключается в использовании эластичной мембраны 1 (рис. 11.2), соединенной с ячейкой 2 и держателем образца 5. Мембрана 1 позволяет осуществлять сближение зонда 4 и образца 5 (механизм сближения условно не показан) и их взаимное сканирование.
Рис. 11.2.
СЗМ, совмещенный с жидкостной (электрохимической) ячейкой: 1 – эластичная мембрана; 2 – ячейка; 3 – держатель зонда; 4 – зонд; 5 – образец; 6 – зуб; 7 – прокладка; 8 – пьезосканер