Читаем Патентование изобретений в области высоких и нанотехнологий полностью

В качестве вспомогательного устройства высокотехнологичного измерительного комплекса рассмотрим еще тестовую структуру для градуировки оптических и зондовых микроскопов. Эта структура выполнена из опаловых сфер 1 определенного размера, закрепленных на подложке 2 (рис. 10.7).

Специфика ее использования в сканирующем зондовом микроскопе заключается в том, что для туннельных исследований тестовая структура должна быть проводящей, а для расширения ее функциональных возможностей еще и многослойной. Это и позволило получить патент [8].

Часто в высокотехнологичных комплексах могут использоваться оптические микроскопы. При исследовании оптически прозрачных, например, биологических образцов с помощью СЗМ 1 (рис. 10.8) возникла необходимость наблюдения с высоким разрешением за зоной измерения на образце 2, закрепленном на основании 3.

Рис. 10.7. Тестовая структура: 1 – опаловые сферы; 2 – подложка

Рис. 10.8. СЗМ с инвертированным оптическим микроскопом: 1 – СЗМ; 2 – образец; 3 – основание; 4 – осветительная система; 5 – отверстие; 6 – платформа; 7 – объектив оптического микроскопа

Для этого осветительная система 4 осуществляет подсветку образца 2, минуя СЗМ, через отверстие 5 в платформе 6. Благодаря этому удалось разместить объектив 7 оптического микроскопа максимально близко к зоне измерения, что позволило наблюдать образец 2 с большим увеличением. В результате был получен патент [9], расширяющий функциональные возможности устройства.

Второй вариант использования оптического микроскопа заключался в многовариантном его применении (рис. 10.9).

В этом случае зонд 1 закрепляют в оптически прозрачном держателе 2, сопряженном с платформой 3, которая установлена посредством опор 4 на основании 5. Образец 6 закреплен на системе предварительного сближения 7. Оптический микроскоп 8, используя оптический модуль 9, имеет возможность наблюдения зоны измерения образца 6 под разными углами от 0 до 90°. Благодаря этой особенности наблюдения образца 6 был получен патент [10].

Рис. 10.9. СЗМ, совмещенный с оптическим микроскопом: 1 – зонд; 2 – оптически прозрачный держатель; 3 – платформа; 4 – опора; 5 – основание; 6 – образец; 7 – система предварительного сближения; 8 – оптический микроскоп; 9 – оптический модуль

И последний пример касается проведения атомно-силовых измерений в магнитном поле (рис. 10.10).

Для этого используются первый 1 и второй 2 магнитопроводы, расположенные с зазорами относительно подвижной каретки 3 с образцом 4. При этом зона измерения зондом 5 образца 4 всегда находится в магнитном поле, формируемом магнитом 6. Необходимость использования подвижной каретки 3 определило специфику использования магнитопроводов 1 и 2, расположенных с зазором относительно нее и позволило получить патент [11].

Рис. 10.10. Магнитно-силовой микроскоп с переменным магнитом: 1,2 – первый и второй магнитопроводы; 3 – подвижная каретка; 4 – образец; 5 – зонд; 6 – магнит

Таким образом, при патентовании вспомогательных устройств высокотехнологичных комплексов необходимо выделить их специфику и даже если не удастся запатентовать оригинальное решение, то наличие новизны в них обезопасит комплекс от нарушения чьих-то патентных прав. При этом постановка новой задачи, если это будет возможно, облегчит получение патента.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Металлоискатели
Металлоискатели

Книга предназначена для радиолюбителей, интересующихся вопросами поиска различных металлических предметов с помощью специального оборудования, к которому, в первую очередь, относятся металлоискатели.В соответствующих разделах приведены принципиальные схемы и рисунки печатных плат как простых, так и более сложных конструкций. Даны рекомендации по самостоятельному изготовлению и настройке металлоискателей, а также советы по их практическому применению.Настоящее издание будет полезно не только подготовленным радиолюбителям, но и всем читателям, интересующимся данной темой, поскольку большинство представленных конструкций может изготовить как взрослый, так и школьник, никогда не державший в руках паяльник.

Михаил Васильевич Адаменко

Радиоэлектроника / Технические науки / Образование и наука