И хотя эти два подхода совершенно различны, есть у них и общая черта: они используют
Поэтому, как только нелинейные уравнения появлялись, их тут же «линеаризовали», т. е. заменяли линейными приближениями. В результате, вместо того чтобы описывать явления во всей их сложности, уравнения классической науки имели дело с
Решительная перемена за последние три десятилетия выразилась в осознании того, что Природа, по выражению Стюарта, «безжалостно нелинейна». Нелинейные процессы преобладают в неодушевленном мире в гораздо более значительной степени, чем мы предполагали. Они также являются существенным аспектом сетевых паттернов живых систем. Теория динамических систем — первая математическая система, позволяющая ученым работать со всем диапазоном сложности этих нелинейных феноменов.
Исследования нелинейных систем за последние десятилетия оказали значительное влияние на науку в целом, поскольку заставили нас заново оценить некоторые фундаментальные представления о взаимоотношениях между математической моделью и теми феноменами, которые она описывает. Одно из таких представлений касается нашего понимания простоты и сложности.
Пребывая в мире линейных уравнений, мы думали, что системы, описываемые простыми уравнениями, отличаются простым поведением, в то время как описываемые сложными уравнениями ведут себя гораздо сложнее. В нелинейном мире — который, как мы начинаем обнаруживать, составляет львиную долю реального мира — простые детерминистские уравнения могут таить в себе неожиданное богатство и разнообразие поведения. С другой стороны, сложное и кажущееся хаотичным поведение может породить упорядоченные структуры, тонкие и изящные паттерны. В теории хаоса сам термин
Еще одно важное свойство нелинейных уравнений, которое всегда смущало ученых, заключается в том, что точное предсказание часто бывает неосуществимо, даже если уравнения строго детерминированы. Эта поразительная особенность нелинейности обусловила важный сдвиг акцента от количественного анализа к качественному.
Обратная связь и итерации
Третье важное свойство нелинейных систем вытекает из частого возникновения в них процессов с усиливающей обратной связью. В линейных системах малые изменения производят малые эффекты, а значительные эффекты являются следствием либо больших изменений, либо суммы множества мелких изменений. В нелинейных системах, напротив, мелкие изменения могут вызвать драматический эффект, если они многократно усиливаются через обратную связь. Такие нелинейные процессы с обратной связью лежат в основе неустойчивости и внезапного появления новых форм порядка, столь характерных для самоорганизации.
Математически петля обратной связи соответствует особому типу нелинейного процесса, известному как
х -> Зх
Зх -> 9х
9х -> 27х
и т. д.
Каждый из этих шагов называется
х -> kх.
Часто встречаемой в нелинейных системах итерацией, очень простой и в то же время производящей огромную сложность, является отображение:
х