Читаем Паутина жизни. Новое научное понимание живых систем полностью

Если теперь мы начертим декартову систему координат, в которой одна ось соответствует углу, а другая — скорости (рис. 6–7), эта система координат представит двухмерное пространство, в котором каждая определенная точка соответствует возможному состоянию движения маятника. Посмотрим, где располагаются эти точки. В состоянии крайнего отклонения скорость равна нулю. Это дает нам две точки на горизонтальной оси. В центре, где угол равен нулю, скорость максимальна и либо положительна (когда маятник движется, например, вправо), либо отрицательна (когда маятник движется в противоположном направлении). Это дает нам две точки на вертикальной оси. Эти четыре точки в фазовом пространстве, которые мы обозначили на рис. 6–7, отражают крайние состояния маятника — максимальное отклонение и максимальную скорость. Точное расположение этих точек будет зависеть от выбранных нами единиц измерения.

Если мы продолжим наблюдения и отметим точки, соответствующие состояниям движения между крайними положениями, то обнаружим, что они лежат на замкнутой петле. Можно превратить петлю в окружность, должным образом выбрав единицы измерения, но, в общем случае, это будет нечто вроде эллипса (рис. 6–8).

СкоростьУгол

Скорость

Угол

Рис. 6–8. Траектория маятника в фазовом пространстве

Эта кривая называется траекторией маятника в фазовом пространстве и полностью описывает движение системы. Все переменные системы (в нашем простом случае — две) представлены единственной точкой, всегда расположенной где-то на этой кривой. С каждым полным циклом качания маятника точка в фазовом пространстве будет описывать петлю.

В любой момент мы можем измерить две координаты точки в фазовом пространстве и таким образом узнать точное состояние системы (угол и скорость). Заметим, что эта кривая никоим образом не является траекторией самого маятника. Это кривая, образованная двумя переменными системы в абстрактном математическом пространстве.

В этом и заключается методика фазового пространства. Переменные данной системы изображаются в абстрактном пространстве, причем одна точка описывает всю систему. По мере того как система изменяет свое состояние, точка вычерчивает в фазовом пространстве траекторию — в нашем случае замкнутую кривую. Когда система является не простым маятником, а гораздо более сложной структурой, у нее, соответственно, больше переменных, но метод остается прежним. Каждая переменная представлена координатой в отдельном измерении фазового пространства. Если в системе 16 переменных, мы получим 16-мерное пространство. Одна точка в этом пространстве будет полностью описывать состояние всей системы, поскольку эта точка имеет 16 координат, каждая из которых соответствует одной из 16 переменных системы.

Скорость



Рис. 6–9. Траектория маятника с трением в фазовом пространстве

Безусловно, мы не можем визуально воспринять фазовое пространство с 16 измерениями; потому его и называют абстрактным математическим пространством. Математики не испытывают никаких проблем с такими абстракциями. Они вполне комфортно чувствуют себя в пространствах, которые нельзя визуализировать. В любом случае, по мере изменения системы точка, определяющая ее состояние в фазовом пространстве, будет двигаться по этому пространству, вычерчивая некую траекторию. Различные начальные состояния системы соответствуют различным начальным точкам в фазовом пространстве, что, в общем случае, обусловливает различные траектории.

Странные аттракторы

Теперь вернемся к нашему маятнику и отметим, что это был идеализированный маятник без трения, раскачивающийся вправо-влево в бесконечном движении. Это типичный пример классической физики, где трением, как правило, пренебрегают. Реальный маятник всегда подвержен некоторому трению, замедляющему его ход, поэтому рано или поздно он остановится. В двухмерном фазовом пространстве это движение отображено кривой, закручивающейся к центру, как показано на рис. 6–9. Эта траектория называется аттрактором, поскольку математики говорят, что, в метафорическом смысле, фиксированная точка в центре системы координат притягивает (англ. «attract») эту траекторию. Метафору распространили и на замкнутые петли, подобные той, что представляет маятник без трения. Траектория в виде замкнутой петли получила название периодического аттрактора, в то время как траектория, закручивающаяся к центру, называется точечным аттрактором.

В течение последующих двадцати лет метод фазового пространства использовался для исследования множества сложных систем. Каждый раз ученые и математики составляют нелинейные уравнения, решают их численными методами, а компьютеры вычерчивают решения в виде траекторий в фазовом пространстве. К своему великому удивлению, исследователи обнаружили, что число различных аттракторов весьма ограничено. Их формы можно классифицировать топологически, а общие динамические свойства системы — вывести из формы ее аттрактора.

Перейти на страницу:

Похожие книги

Психология согласия. Революционная методика пре-убеждения
Психология согласия. Революционная методика пре-убеждения

Лучший способ добиться согласия — это воспользоваться пре-убеждением. Революционной методикой, которая позволяет получать положительные ответы еще до начала переговоров. Хотите уговорит руководителя повысить вам зарплату? Соблазнить потенциального клиента на дорогую покупку? Убедить супруга провести выходные так, как хочется вам и не хочется ему? Пре-убеждение от социального психолога №1 в мире, автора бестселлера "Психология влияния" Роберта Чалдини срабатывает во всех случаях. Она помогает избежать клиентских возражений, утомительных споров и обидных отказов. 7 простых принципов пре-убеждения позволяют выстроить разговор таким образом, что его исход почти наверняка приведет к желаемому согласию.

Роберт Бено Чалдини , Роберт Чалдини

Деловая литература / Психология / О бизнесе популярно / Образование и наука / Финансы и бизнес
Психология масс и фашизм
Психология масс и фашизм

Предлагаемая вниманию читателя работа В. Paйxa представляет собой классическое исследование взаимосвязи психологии масс и фашизма. Она была написана в период экономического кризиса в Германии (1930–1933 гг.), впоследствии была запрещена нацистами. К несомненным достоинствам книги следует отнести её уникальный вклад в понимание одного из важнейших явлений нашего времени — фашизма. В этой книге В. Райх использует свои клинические знания характерологической структуры личности для исследования социальных и политических явлений. Райх отвергает концепцию, согласно которой фашизм представляет собой идеологию или результат деятельности отдельного человека; народа; какой-либо этнической или политической группы. Не признаёт он и выдвигаемое марксистскими идеологами понимание фашизма, которое ограничено социально-политическим подходом. Фашизм, с точки зрения Райха, служит выражением иррациональности характерологической структуры обычного человека, первичные биологические потребности которого подавлялись на протяжении многих тысячелетий. В книге содержится подробный анализ социальной функции такого подавления и решающего значения для него авторитарной семьи и церкви.Значение этой работы трудно переоценить в наше время.Характерологическая структура личности, служившая основой возникновения фашистских движении, не прекратила своею существования и по-прежнему определяет динамику современных социальных конфликтов. Для обеспечения эффективности борьбы с хаосом страданий необходимо обратить внимание на характерологическую структуру личности, которая служит причиной его возникновения. Мы должны понять взаимосвязь между психологией масс и фашизмом и другими формами тоталитаризма.Данная книга является участником проекта «Испр@влено». Если Вы желаете сообщить об ошибках, опечатках или иных недостатках данной книги, то Вы можете сделать это здесь

Вильгельм Райх

Культурология / Психология и психотерапия / Психология / Образование и наука