Существует три основных типа аттракторов: точечные, соответствующие системам, которые достигают устойчивого равновесия; периодические, соответствующие периодическим колебаниям; и так называемые странные аттракторы, соответствующие хаотическим системам. Типичный пример системы со странным аттрактором представляет собой «хаотический маятник», впервые исследованный японским математиком Йошисуке Уэда в конце 1970-х годов. Это нелинейная электронная схема с внешним питанием, относительно простая, но с исключительно сложным поведением16. Каждое колебание этого хаотического генератора колебаний уникально. Система никогда не повторяет себя, и каждый цикл открывает новую область фазового пространства. Тем не менее, несмотря на кажущуюся неустойчивость движения, точки в фазовом пространстве расположены отнюдь не беспорядочно. Вместе они формируют сложный высокоорганизованный паттерн — странный аттрактор, который теперь носит имя Уэда.
Рис. 6-10. Аттрактор Уэда. Из Uedaetal. (1993)
Аттрактор Уэда — это траектория в двухмерном фазовом пространстве, которая образует
Одно удивительное свойство странных аттракторов заключается в том, что они, как правило, ограничены малым числом измерений — даже в многомерном фазовом пространстве. Например, система может содержать 50 переменных, но ее движение при этом описывается трехмерным странным аттрактором — свернутой поверхностью в 50-мерном пространстве. Это, естественно, характеризует высокую степень порядка.
Таким образом, хаотичное поведение — в современном научном понимании этого термина — разительно отличается от беспорядочного, неустойчивого движения. С помощью странных аттракторов можно определить различие между обычной беспорядочностью, или
«Эффект бабочки»
Как мы видели на примере преобразования пекаря, для хаотических систем характерна чрезвычайная чувствительность к начальным условиям. Мельчайшие изменения в начальном состоянии системы со временем приводят к крупномасштабным последствиям. В теории хаоса это называется «эффектом бабочки». Основой для названия послужило полушутливое утверждение, что бабочка, всколыхнув сегодня воздух в Пекине, может через месяц оказаться причиной бури в Нью-Йорке. Эффект бабочки был открыт в начале 1960-х годов метеорологом Эдвардом Лоренцом, разработавшим очень простую модель погодных условий, состоящую из трех связанных нелинейных уравнений. Он обнаружил, что решения его уравнений чрезвычайно чувствительны к начальным состояниям. Начинаясь практически в одной точке, две траектории будут развиваться совершенно по-разному, исключая возможность каких бы то ни было заблаговременных предсказаний17.
Это открытие привело в замешательство все мировое научное сообщество, поскольку ученые давно привыкли полагаться на детерминированные уравнения для предсказания с большой точностью таких феноменов, как солнечные затмения или появление комет. Казалось непостижимым, что четко детерминированные уравнения движения могут привести к непредсказуемым результатам. И все же именно это обнаружил Лоренц. По его собственным словам:
Обычный человек, видя, что мы достаточно эффективно предсказываем приливы на несколько месяцев вперед, спросит, почему мы не можем проделать то же самое в отношении атмосферы. Ведь это всего лишь другая система потоков и ее законы не более сложны. Но я понял, что любая физическая система, не проявляющая периодичности в поведении, непредсказуема18.
Модель Лоренца не представляет какого-то реального феномена погоды, но служит поразительным примером того, как простой набор нелинейных уравнений может привести к крайне сложному поведению.
Публикация этой модели в 1963 году знаменовала зарождение теории хаоса, и аттрактор, известный с тех пор как аттрактор Лоренца, стал самым известным и широко изучаемым из странных аттракторов. В то время как аттрактор Уэда двухмерен, аттрактор Лоренца расположен в трех измерениях (рис. 6-11). Вычерчивая его, точка в фазовом пространстве движется по видимости случайным образом и описывает несколько колебаний нарастающей амплитуды вокруг одного центра, затем следуют колебания вокруг второго центра, потом она внезапно возвращается и осциллирует вокруг первого центра и т. д.
Рис. 6-11. Аттрактор Лоренца. Из Mosekildeetal. (1994)
От количества к качеству