С тех пор Лавлок разработал несколько гораздо более сложных версий мира маргариток. В новых моделях присутствуют не два, а гораздо больше видов маргариток с различной пигментацией; существуют модели, в которых маргаритки развиваются и изменяют цвет, модели, в которых кролики поедают маргаритки, а лисы поедают кроликов, и т. д.73. Конечный результат анализа всех этих весьма сложных моделей состоит в том, что небольшие температурные колебания, присутствующие в первоначальной модели мира маргариток, сглаживаются и саморегуляция становится все более и более устойчивой по мере возрастания сложности модели. Кроме того, Лавлок ввел в свои модели катастрофы, которые с регулярными интервалами уничтожают 30 % маргариток. Он обнаружил, что саморегуляция мира маргариток обнаруживает замечательную гибкость и при этих резких возмущениях.
Все эти модели вызвали оживленную дискуссию среди биологов, геофизиков и геохимиков, и с тех пор, как они были впервые опубликованы, стала вызывать больше уважения в научном сообществе и Гайя- гипотеза. Сегодня уже в разных частях света существует несколько исследовательских групп, которые работают над подробными формулировками Гайя-теории74.
Первые попытки синтеза
В конце 70-х, почти двадцать лет спустя после того, как в различных контекстах были обнаружены ключевые критерии самоорганизации, удалось сформулировать подробные математические теории и модели самоорганизующихся систем и стал очевиден набор присущих им характеристик: непрерывный поток энергии и материи через систему, далекое от равновесия устойчивое состояние, возникновение новых паттернов порядка, центральная роль петель обратной связи и математическое описание в виде нелинейных уравнений.
В это же время австрийский физик Эрих Янч, работавший тогда в Калифорнийском университете в Беркли, в своей книге
Примечания к главе 5
См. Checkland (1981), pp. 123ff.
См. там же, р. 129.
CM.Dickson(1971).
Цитируется по Checkland (1981), р. 137.
См. там же.
См. Richardson (1992), pp. 149ff, 170ff.
Ulrich(1984).
8. См. Konigswieser и Lutz (1992).
9. См. Сарга(1982),р. 116ff.
10. Lilienfeld(1978), pp. 191-2.
См. ниже, с 140–142.
См. выше, с. 34–35.
См. выше, с. 53.
См. ниже, с. 179 и далее.
См. Varela et al. (1992), p. 94.
См. выше, с. 73 и далее.
McCulloch и Pitts (1943).
См., например, Ashby (1947).
См. Yovits and Cameron (1959), Foerster and Zopf (1962); Yovits, Jacobi and Goldstein (1962).
Математическое выражение избыточности имеет вид R = 1 — H/Hmax > где Н — энтропия системы в данный момент, а Н мах — максимально возможная энтропия для этой системы.
Подробный обзор истории этих исследовательских проектов см. в Paslack (1991).
Цитируется там же, р. 97п.
См. Prigogine and Stengers (1984), p. 142.
См. Laszlo (1987), p. 29.
См. Prigogine and Stengers (1984), p. 146ff.
Там же, p. 143.
Prigogine (1967).
Prigogine and Glansdorff (1971).
Цитируется по Paslack(1991), p. 105.
См. Graham (1987).
Cm. Paslack (1991), pp. 106-7.
Цитируется там же, р. 108; см. также Haken (1987).
Перепечатана в Haken (1983).
Graham (1987).
35. Цитируется по Paslack (1991),p. 111.
36. Eigen(1971).
См. Prigogine and Stengers (1984), p. 133ff, атакже Laszlo (1987), p. 31ff.
Cm. Laszlo(1987), pp. 34–35.
Цитируется по Paslack (1991),p. 112.
Humberto Maturana в Maturana and Varela (1980), p. xii.
Maturana(1970).
Цитируется по Paslack (1991), p. 156.
Maturana (1970).
Цитируется по Paslack (1991), p. 155.
Maturana (1970); см. р. 162ff; подробности и примеры см. ниже, с. 182 и далее.
См. ниже, с. 285 и далее.
Humberto Maturana в Maturana and Varela (1980), p. xvii.
Maturana and Varela (1972).
Varela, Maturana and Uribe (1974).
Maturana and Varela (1980), p. 75.
См. выше, ее. 34 и 82–83.
Maturana and Varela (1980), p. 82.
См. Capra (1985).
GeoffreyChew, цитируется по Capra (1975), p. 296.
См. ниже, с. 176 и далее.
См. выше, ее. 37–39 и 48.
См. Ке11еу(1988).
См. Lovelock (1979), p. Iff.
Lovelock (1991), pp. 21–22.
Там же, р. 12.
См. Lovelock (1979), р. 11.
Lovelock (1972).
Margulis (1989).
См. Lovelock (1991), pp. 108-11; см. также Harding (1994).
Margulis (1989).
См. Lovelock and Margulis (1974).
Lovelock (1991), p. 11.
См. выше, с. 40 и далее.
См. ниже, ее. 238–239,252.
Lovelock (1991), р. 62.
См. там же, p. 62ff, см. также Harding (1994).