Затем Ньютон предложил: давайте стягивать треугольник, образованный кривой и разностями координат, сдвигая две точки на кривой все ближе и ближе друг к другу. Пока мы делаем это, отрезок прямой между двумя точками будет все ближе и ближе подходить к кривой, а погрешность в вычислении скорости между двумя точками будет все меньше и меньше. В конце концов когда мы достигаем
Стянуть этот треугольник — в математическом смысле — к нулю и вычислить соотношение между двумя бесконечно малыми разностями — задача отнюдь не тривиальная. Точное определение предела бесконечно малого — самый трудный момент всей процедуры исчисления.
Рис. 6–4.
Чтобы вычислить постоянную скорость, нужно поделить
разность между координатами расстояния
на разность между координатами времени
Рис. 6–5.
Вычисление приблизительного значения скорости между двумя точками в случае ускоряющегося движения
На математическом языке бесконечно малая разность называется дифференциалом; поэтому и исчисление, изобретенное Ньютоном и Лейбницем, известно как дифференциальное. Уравнения, в которые входят дифференциалы, называются дифференциальными уравнениями.
Изобретение дифференциального исчисления явилось для науки гигантским шагом вперед. Впервые в человеческой истории понятию бесконечного, волновавшему философов и поэтов с незапамятных времен, было дано точное математическое определение; оно открыло необозримые новые возможности для анализа естественных феноменов.
Мощь нового аналитического инструмента можно проиллюстрировать на знаменитом парадоксе Зенона, представителя ранней элейской школы греческой философии. Согласно Зенону, великий атлет Ахилл никогда не сможет догнать черепаху в забеге, если черепаха стартует первой, поскольку, как только Ахилл наверстает начальное отставание, черепаха за это время продвинется еще дальше, а когда Ахилл пробежит и это расстояние, у черепахи опять окажется фора, и так до бесконечности. И хотя отставание атлета продолжает сокращаться, оно никогда не исчезнет. В каждый данный момент черепаха всегда будет впереди. Поэтому, как заключает Зенон, даже самый быстрый бегун никогда не сможет состязаться с медлительной черепахой.
Греческие философы и их последователи веками спорили по поводу этого парадокса, но никак не могли разрешить его, поскольку точное определение бесконечно малого ускользало от них. Упущение в аргументации Зенона кроется в том, что, даже если Ахиллу придется сделать бесконечное число
В XVII веке Исаак Ньютон использовал свое исчисление для описания любых возможных движений твердых тел с помощью набора дифференциальных уравнений, которые с тех пор стали известны как
Лицом к лицу со сложностью
В течение XVIII и XIX столетий уравнения движения Ньютона были облечены в более общие, более абстрактные и более элегантные формы некоторыми из величайших умов в истории математики. Успешные новые формулировки, предложенные Пьером Лапласом, Леонардом Эйлером, Жозефом Лагранжем и Вильямом Гамильтоном, не изменили содержания ньютоновых уравнений, но их возрастающая сложность позволила ученым анализировать постоянно расширяющийся диапазон естественных явлений.
Применяя свою теорию к движению планет, Ньютон сам воспроизвел основные особенности Солнечной системы, правда, без учета некоторых тонкостей. Лаплас, однако, усовершенствовал вычисления Ньютона до такой степени, что ему удалось объяснить движение планет, их спутников и комет вплоть до мельчайших деталей, равно как и механизм приливов и других явлений, связанных с гравитацией.