Отметив эти числа на двух участках оси, можно увидеть, что величины от 0 до 0,5 отображаются числами от 0 до 0,75. Таким образом, 0,2 превращается в 0,48, а 0,4 становится 0,72. Числа от 0,5 до 1 отображаются на том же участке, но в обратном порядке. Так, 0,6 превращается в 0,72, а 0,8 становится 0,48. Общий эффект показан на рис. 6–6. Отображение растягивает отрезок от 0 до 1,5, а затем снова сворачивает его так, что значения пробегают от 0 до 0,75 и обратно.
Итерация этого отображения выльется в повторяющееся растягивание и сворачивание операций подобно тому, как пекарь вновь и вновь месит тесто, сворачивая и растягивая его. Эту итерацию очень удачно назвали
Даже самые мощные компьютеры округляют свои вычисления, ограничивая количество цифр после точки; и после большого количества итераций даже мелкие погрешности округления складываются в значительную неопределенность, исключая любые предсказания. 11реобра-зование пекаря есть прототип нелинейных сверхсложных непредсказуемых процессов, обозначаемых специальным термином «хаос».
Пуанкаре и следы хаоса
Теория динамических систем — математическая теория, позволившая внести порядок в хаос, — была разработана совсем недавно, однако ее основы были заложены в начале XX века одним из величайших математиков нового времени Анри Пуанкаре. Среди математиков своего века Пуанкаре был последним великим эрудитом. Ученый внес весомый вклад фактически во все разделы математики. Собрание его сочинений исчисляется несколькими сотнями томов.
В конце XX века нам не трудно оценивать достижения Пуанкаре: важнейшее из них состояло в том, что он вернул в математику визуальные образы10. Начиная с XVII века, стиль европейской математики постепенно смещался от геометрии (математики визуальных форм) к алгебре (математике формул). Так, например, Лаплас, один из великих формализаторов, гордился тем, что в его
Визуальная математика Пуанкаре, однако, не равнозначна геометрии Евклида. Это геометрия нового типа, математика паттернов и взаимоотношений, известная как топология. Топология — это геометрия, в которой все длины, углы и площади могут деформироваться как угодно. Так, треугольник может быть постепенно трансформирован в прямоугольник, прямоугольник — в квадрат, квадрат — в окружность. Точно так же куб может превратиться в цилиндр, цилиндр — в конус, конус — в сферу. Благодаря этим непрерывным преобразованиям топологию часто называют «резиновой геометрией». Все фигуры, которые могут быть преобразованы друг в друга посредством непрерывного сгибания, растягивания и кручения, называются топологически эквивалентными.
Тем не менее не все можно осуществить через топологическую трансформацию. Фактически топология занимается как раз теми свойствами геометрических фигур, которые не изменяются при их трансформации. Пересечения линий, например, остаются пересечениями, а отверстие в торе (бублике) нельзя трансформировать так, чтобы оно пропало. Таким образом, бублик может быть топологически трансформирован в кофейную чашечку (отверстие превратится в отверстие ручки), но никак не в блин. Тогда топология оказывается действительно математикой взаимоотношений, неизменяемых, или инвариантных, паттернов.
Пуанкаре использовал топологическую концепцию для анализа качественных особенностей сложных динамических проблем — и тем самым заложил основы математики сложных систем, которая сформировалась лишь столетие спустя. Среди проблем, проанализированных Пуанкаре, была знаменитая проблема трех тел в небесной механике (относительное движение трех тел под влиянием их взаимного гравитационного притяжения), которую прежде никому не удавалось решить1'. Применив свой топологический метод к слегка упрощенной проблеме трех тел, Пуанкаре смог определить общую форму их траекторий, и нашел, что она отличается устрашающей сложностью:
Когда пытаешься представить фигуру, образуемую этими двумя кривыми и бесконечными их пересечениями… обнаруживаешь некую сеть, паутину, или бесконечно густую решетку; ни одна из этих кривых никогда не может пересечь саму себя, но должна загибаться очень сложным образом, чтобы пересечь нити паутины бесконечно много раз. Поражает сложность этой фигуры, которую я даже не пытаюсь нарисовать12.