Клеточные автоматы использовались профессиональными математиками и любителями не только для изобретения многочисленных игр; не менее пристально их изучали как математический инструмент для научных моделей. В силу их сетевой структуры и способности работать с большими количествами дискретных переменных, эти математические формы были вскоре признаны и приняты в качестве замечательной альтернативы дифференциальным уравнениям в области имитации сложных систем9. В некотором смысле эти два подхода — дифференциальные уравнения и клеточные автоматы — можно рассматривать как различные математические структуры, соответствующие двум отдельным концептуальным измерениям в теории живых систем — структуре и паттерну.
Имитация автопоэзных сетей
В начале 70-х Франциско Варела понял, что пошаговые последовательности клеточных автоматов идеальны для компьютерного моделирования и обеспечивают его мощным инструментом имитации автопоэзных сетей. И в 1974 году, совместно с Матураной и ученым-компьютерщиком Рикардо Урибе, Вареле удалось разработать требуемый компьютерный имитатор10. Их клеточный автомат состоит из решетки, в плоскости которой беспорядочно передвигаются «катализатор» и два типа элементов. Они взаимодействуют друг с другом таким образом, что в результате могут образоваться новые элементы обоих видов; одни могут исчезать, а другие связываются друг с другом, образуя цепи.
В компьютерных распечатках решетки «катализатор» помечается звездочкой (*). Элемент первого типа, присутствующий в больших количествах, называется «субстратом» и помечается кружком (о); элемент второго типа называется «звеном» и помечается кружком внутри квадрата ([0]). Существует три различных типа взаимодействий и преобразований: два
Эти три типа взаимодействия символически изображаются так:
Точные математические предписания (так называемые «алгоритмы»), касающиеся того, когда и как происходят эти процессы, достаточно сложны. Они состоят из многочисленных правил передвижения различных элементов и их взаимодействий". Правила передвижения, например, включают следующие пункты:
Катализатор и звенья могут также меняться местами с субстратами и, таким образом, свободно проходить сквозь их массивы.
Субстраты — но не катализатор и не свободные звенья — могут пройти сквозь цепь и занять дырку, расположенную за ней (это имитирует полупроницаемые мембраны клеток).
Звенья, связанные в цепь, не могут передвигаться никак.
В рамках этих правил фактическое движение элементов и многочисленные подробности их взаимодействия — создание, сцепление и распад — выбираются случайным образом12. Когда запущена имитация на компьютере, генерируется сеть взаимодействий, включающая множество ситуаций случайного выбора, а следовательно, порождающая в свою очередь самые различные последовательности. Авторам удалось показать, что некоторые из этих последовательностей приводят к устойчивым автопоэзным паттернам.
Пример такой последовательности взят из их статьи и воспроизведен, в виде семи стадий, на рис. 9–1. В начальном состоянии (стадия 1) одна позиция решетки занята катализатором, а все другие — субстратами. На стадии 2 уже создано несколько звеньев, и, соответственно, теперь в решетке есть несколько дырок. На стадии 3 создано еще больше звеньев и некоторые из них образовали цепи. На стадиях 4–6 производство звеньев и формирование цепей продолжается, и на стадии 7 мы видим, что цепь связанных звеньев замкнулась на себя, охватив катализатор, три звена и два субстрата. Таким образом, цепь сформировала
Рис. 9–1. Компьютерная имитация автопоэзной сети
В ходе длительной имитации цепь и дальше служила оболочкой для катализатора, тогда как звенья продолжали распадаться и заменяться другими. Таким образом, мембраноподобная цепь превратилась в границу