Современная теория не исключает возможного существования тяжелых нейтрино с отличной от нуля массой покоя. Надо сказать, что из лабораторных опытов определить массы нейтрино удается с трудом и неточно. До недавнего времени, до 1980 года, известны были лишь верхние пределы массы нейтрино различного типа. Лабораторные опыты по распаду трития давали для массы покоя электронного нейтрино верхний предел
С.С. Герштейн и Я.Б. Зельдович (1966 год) показали, что космологические соображения ограничивают массу покоя электронного и мюонного нейтрино значением меньше 100–200 эВ. Последующие авторы уточняли эти соображения и утверждали, что масса нейтрино меньше 10 эВ. К тем же выводам для тау-нейтрино пришли независимо Бенжамен Ли и Вайнберг в США и М.И. Высоцкий, А.Д. Долгов и Я.Б. Зельдович в СССР.
В последнее время в Москве, в Институте теоретической и экспериментальной физики В.А. Любимов, Е.Г. Новиков, В.З. Нозик, Е.Ф. Третьяков и В.С. Козик провели новое более точное исследование распада трития и пришли к выводу, что электронное нейтрино с большой вероятностью имеет массу покоя в пределах между 15 и 45 эВ. За рубежом появились указания на так называемые нейтринные осцилляции, т. е. на взаимные превращения электронных нейтрино в мюонные и тау-нейтрино во время пролета нейтрино от источника (ядерного реактора или ускорителя) до мишени, т. е. детектора. Такие осцилляции интересны для астрономии сами по себе, так как они объясняют дефицит солнечных нейтрино в соответствии с идеей, давно высказанной Б.М. Понтекорво. Но эти осцилляции важны еще и потому, что они были бы невозможны, если бы все нейтрино имели нулевую массу покоя.
Наличие у нейтрино небольшой массы покоя, скажем, между 5 и 50 эВ, имеет огромное значение для космологии. Процессы при высокой температуре, в течение тех «первых минут», которым посвящена книга Вайнберга, практически не изменяются, поскольку энергия покоя нейтрино мала по сравнению с температурой (см. выше в этом дополнении). Однако еще до рекомбинации водорода (происходящей при температуре 3000 К = 0,3 эВ) тепловая энергия становится меньше массы покоя нейтрино. В термодинамическом равновесии нейтрино и антинейтрино должны были бы аннигилировать, превращаясь в фотоны. Однако вероятность такого процесса при температуре ниже 10 10К ничтожна, аннигиляция нейтрино практически не имеет места.
К сегодняшнему дню Вселенная пришла с неизменным соотношением между концентрацией фотонов (~400 штук в 1 см 3) и концентрацией нейтрино (около 360 штук нейтрино и антинейтрино всех трех сортов в 1 см 3).
Средняя энергия одного фотона при температуре 2,7 или З К около 0,001 эВ, что соответствует массе 2 x 10 -36г; плотность фотонного газа составляет при этом около 10 -33г/см 3.
Плотность же нейтринного газа при средней массе покоя 10 эВ для нейтрино всех видов равна 10 -29г/см 3. Это в 10 000 раз больше плотности излучения! Плотность излучения в настоящее время мала по сравнению с плотностью обычного вещества, т. е. барионов (~ 10 -30— 10 -31г/см 3), и мала по сравнению с критической плотностью (5 x 10 -30— 10 -29г/см 3). Но плотность нейтрино, если они обладают массой покоя порядка 10 эВ, оказывается очень большой! Возникает принципиально новая картина Вселенной, в которой главную часть плотности составляет плотность нейтрино.
Более того, не исключено, что именно за счет плотности нейтрино мир оказывается замкнутым, а не открытым. Напомним, что при плотности, превышающей критическую, общая теория относительности предсказывает: 1) что кривизна пространства соответствует замкнутому миру без границ, но с конечным полным объемом, наподобие поверхности шара; 2) что наблюдаемое в настоящее время расширение Вселенной через некоторое время, порядка 10 миллиардов лет, сменится неограниченным сжатием. Произойдет ли это? Ответ на этот вопрос зависит от результатов очень трудных опытов по определению массы нейтрино.