Во Вселенной с тяжелыми нейтрино рост возмущений плотности также происходит совершенно иначе: сперва возникают и усиливаются возмущения плотности нейтрино (это первыми отметили в 1975 году венгерские физики Маркс и Салаи) и лишь позднее, после рекомбинации водорода, к ним подстраиваются возмущения плотности нейтрального газа. В частности, образование скоплений галактик оказывается возможным совместить с малой амплитудой возмущений микроволнового излучения. Эта картина развивается в нескольких заметках Я.Б. Зельдовича, Р.А. Сюняева, А.Г. Дорошкевича и М.Ю. Хлопова в «Письмах в Астрономический журнал» (август 1980 года).
Есть указания, что масса гигантских скоплений галактик больше суммы масс галактик, входящих в эти скопления. Наиболее убедительные данные по проблеме скрытой массы дал эстонский астроном Эйнасто. Возможно, что скрытая масса представляет собой облако тяжелых нейтрино, в которое погружены галактики.
В настоящее время (декабрь 1980 года) мир с нетерпением ожидает новых экспериментальных данных по массам нейтрино различных сортов.
Наконец, возникает естественный вопрос — ограничивается ли число сортов нейтрино тремя (соответствующим электрону, мюону и тау-лептону). В.Ф. Шварцман (СССР, 1969 год) показал, что слишком большое число сортов нейтрино изменило бы результаты нуклеосинтеза, так что космология позволяет высказать суждение о частицах, еще не открытых в лаборатории, позволяет бороться с демографическим взрывом среди частиц. Эти соображения уточняли американские астрофизики. Сейчас считается, что число сортов нейтрино не превышает 4–6.
ДОПОЛНЕНИЕ 8. НАЧАЛЬНЫЕ ВОЗМУЩЕНИЯ
И ПЕРВИЧНЫЕ ЧЕРНЫЕ ДЫРЫ
В настоящее время Вселенная с хорошей точностью однородна в большом масштабе. Но определенные отклонения от однородности в масштабе, соответствующем скоплениям галактик, т. е. порядка 10 — 100 мегапарсек, несомненно имели место, иначе не могла бы возникнуть наблюдаемая структура Вселенной.
Амплитуду этих возмущений в начальном состоянии при большом сжатии можно характеризовать безразмерной величиной — локальным отклонением метрики пространства от метрики однородного пространства. На классическом языке можно говорить о возмущении ньютонового гравитационного потенциала, причем за единицу принят квадрат скорости света. Раньше предполагалось, что безразмерное возмущение имеет порядок 10 -3. Если у нейтрино масса покоя около 10 эВ, то для образования структуры Вселенной достаточно, чтобы начальные возмущения были порядка 10 -5в безразмерных единицах.
При этом астрономические наблюдения дают сведения о возмущениях в указанном выше большом масштабе и на начальном этапе эволюции; отдельные галактики, облака газа и звезды в галактиках появились позже! Они возникли при дроблении возмущений плотности большого масштаба и не характеризуют начальные малые возмущения метрики.
Наиболее вероятной представляется картина, в которой возмущения во всех масштабах имеют одинаковый порядок величины (около 10 -5в безразмерных единицах). Начальные возмущения определенного масштаба, порядка 10 — 100 мегапарсек, оказываются при этом единственно важными для сегодняшней картины Вселенной в силу физических законов развития возмущений во время эволюции от начального до сегодняшнего состояния.
В принципе, однако, эти же законы не исключают возможности больших отклонений от однородности в малом масштабе, например в масштабе, который сегодня равен одному парсеку, или 3 x 10
18см. В ходе расширения длина волны возмущения также растет; эта длина волны была меньше 3 x 10
15см в момент рекомбинации (температура 3000 К), 3 x 10
12см в момент, когда температура равнялась 3 x 10
6К, и т. д. В частности, при красном смещении
Однако, если амплитуда возмущения велика, то возможен и другой вариант развития событий. Я.Б. Зельдович и И.Д. Новиков (1967 год) отметили, что большой избыток плотности в какой-то области может остановить расширение. В этой области оно сменится сжатием и образуется черная дыра, которая уже не выпустит находящиеся внутри нее вещество и излучение. Получающееся тело было названо первичной черной дырой в отличие от тех черных дыр, которые образуются в настоящее время или образовались в недалеком прошлом в результате эволюции звезд или звездных скоплений.