Кривизна, создаваемая массой Земли, очень мала. Расстояние до центра Земли приблизительно на полтора миллиметра длиннее, чем частное от деления длины окружности нашей планеты на 2. В этом смысле геометрия нашего локального пространства отличается от идеальной плоскостности на одну четырехмиллиардную. Если бы Земля была тяжелее, она создавала бы более сильную кривизну. Объекты с большей массой способны создавать и большую кривизну. Расстояние от центра до поверхности Солнца, например, приблизительно на полкилометра длиннее, чем частное длины его окружности и 2. Белые карлики и нейтронные звезды, которые гораздо плотнее Солнца, создают гораздо большие значения кривизны в примыкающих к ним областях. Расстояние до центра нейтронной звезды почти на десять процентов больше, чем частное от деления окружности этой звезды на 2.
Кривизну трехмерного пространства вблизи плотной звезды можно изобразить с помощью графического метода, именуемого
Рис. 18. Диаграмма вложения, которая помогает визуально представить кривизну пространства, создаваемую массивным сферическим телом. Прогибание поверхности показывает пространственное отношение между точками, лежащими на поперечном сечении плотной сферы
Вблизи черной дыры локальная кривизна пространства настолько велика, что расстояние до центра черной дыры бесконечно длиннее, чем длина ее окружности (поверхности этой дыры с радиусом Шварцшильда). Именно из-за этого бесконечного искажения пространства внутри черной дыры эти объекты кажутся такими странными. Эта кривизна создает горизонт событий, кривизна вызывает сильнейшую разницу в течении времени для разных наблюдателей, и кривизна же дарует крупным черным дырам стойкость, которая позволит им прожить до крайне отдаленного будущего.
Приливные силы
Эйнштейн показал, что кривизна пространства, вызванная сосредоточением массы, создает
Однако вблизи поверхности черной дыры приливные силы огромны. Для пущей ясности вообразите, что вы находитесь неподалеку от черной дыры, имеющей массу Солнца. Ее шварцшильдовский радиус составляет всего около трех километров. Если бы вам удалось встать на поверхность черной дыры, ваше тело опять-таки подверглось бы действию приливной силы растяжения. Однако на этот раз эта сила в миллиард раз превышает силу притяжения Земли. Другими словами, вы оказались бы под действием растягивающей силы примерно в сто миллиардов фунтов. Столь мощные приливные силы разорвали бы на мелкие кусочки любой обычный макроскопический объект: будь то камень, космический зонд или астронавт.