Читаем Пять возрастов Вселенной полностью

На темноту ночного неба влияет и расширение Вселенной. В силу того что пространство-время расширяется, удаленные звезды вносят меньший вклад в яркость неба, чем это предполагалось согласно предшествующему аргументу Евклида. Далекие звезды в удаленных галактиках уносятся от нас со скоростями, близкими к скорости света. Их свет, приходящий из самых отдаленных уголков видимой Вселенной, невероятно растягивается, вследствие чего снижается его интенсивность.

Темнота ночного неба имеет глубочайшие следствия для развития и продолжительного существования жизни. Если бы Вселенная не имела конечного возраста и не расширялась, то ночное небо действительно сверкало бы как поверхность звезды. В таких условиях звездная эволюция претерпела бы радикальные изменения, а возникновение и развитие жизни на планетах было бы практически невозможно. Если бы нашу Солнечную систему переместили в такую гипотетическую яркую Вселенную, то Солнце и планеты внезапно оказались бы погруженными в тепловую ванну излучения, столь же горячую, сколь и поверхность звезды. Так как, в силу второго закона термодинамики, тепло должно распространяться из горячих областей в холодные, Солнце стало бы нагреваться, чтобы распространить свою энергию в пространство. Сами планеты прогрелись бы до температур звезд, а это тысячи градусов Кельвина, и постепенно были бы стерты мощным и безжалостным потоком фонового света.

Наблюдаемая темнота ночного неба служит веским доказательством конечного возраста Вселенной. Это осознание воистину замечательно. И почти настолько же замечательно то, что этот важный ключ проглядели ученые, до двадцатого века занимавшиеся парадоксом Ольберса. Идея о статической и неизменной Вселенной прочно укоренилась в культуре. Простое и правильное решение этого парадокса оставалось непризнанным, пока Хаббл не открыл, что Вселенная расширяется, а Эйнштейн не создал теорию, которая допускала, и даже предсказывала, расширяющееся пространство-время.

Нуклеосинтез

Следующим важным достижением зарождающейся Вселенной было образование маленьких сложных ядер типа гелия, дейтерия и лития. Ядра этих легких элементов образовались в реакциях ядерного синтеза, произошедших в первые несколько минут времени. Более крупные ядра, включая углерод и кислород, дающие основу для жизни, образовались гораздо позднее в горячих недрах звезд (о чем рассказывается в следующих главах). Образование тяжелых элементов из более легких, называемое нуклеосинтезом, значительно изменяет материальное содержимое Вселенной.

Энергия — это основная концепция, управляющая нуклеосинтезом — процессом ядерного синтеза. До этого момента более крупные ядра имеют меньшую массу-энергию покоя на частицу, чем составляющие их частицы по отдельности. Например, масса-энергия покоя ядра гелия, состоящего из двух протонов и двух нейтронов, меньше, чем суммарная масса-энергия покоя этих четырех частиц, существующих по отдельности. Этот дефицит массы-энергии ядра гелия должен иметь какое-то объяснение. В процессе реакции ядерного синтеза, в результате которой образуется ядро гелия, недостающая масса превращается в энергию и высвобождается в соответствии со знаменитой формулой Эйнштейна Е = mс2. Механизм ядерного синтеза лежит в основе водородных бомб, образования энергии в недрах Солнца и нуклеосинтеза в ранней Вселенной.

Протоны и нейтроны, образующие ядро атома, удерживает вместе сильное взаимодействие, которое притягивает составляющие ядро частицы, но действует лишь на очень коротких расстояниях. На больших расстояниях сильнее оказывается электромагнитная сила, поскольку она действует в более широком диапазоне. Например, при взаимодействии протона с дейтроном (простое ядро, содержащее один протон и один нейтрон), электромагнитная сила является силой отталкивания и действует как преграда для ядерного синтеза, отталкивая взаимодействующие частицы друг от друга. Для успешного слияния протона и дейтрона они должны оказаться достаточно близко друг от друга, так чтобы сильное взаимодействие подавило электромагнитную силу. При достаточно высоких температурах эти частицы обладают достаточной кинетической энергией, чтобы добиться необходимой близости. Однако температура не должна быть слишком высокой; в противном случае только что синтезированные ядра разлетятся сразу же после возникновения. Необходимость соблюдать этот компромисс задает диапазон температур, при которых могут происходить реакции ядерного синтеза.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература