Читаем Пять возрастов Вселенной полностью

Относительно рано в истории космоса, примерно через секунду после Большого взрыва, фоновая температура Вселенной упала до десяти миллиардов градусов Кельвина. С плотностью, в двести раз превышающей плотность воды, Вселенная оказалась достаточно прохладной, чтобы протоны и нейтроны начали сливаться, образуя атомные ядра легких элементов. Тогда было синтезировано огромное количество гелия с меньшими примесями дейтерия и лития. Ядерная деятельность продолжалась в течение достаточно короткого промежутка времени: около трех минут. В этот момент температура непрерывно расширяющейся Вселенной упала до одного миллиарда градусов Кельвина, а плотность стала превышать плотность воды всего в двадцать раз. Тогда ядерные реакции резко прекратились, и завершилась фаза нуклеосинтеза.

Несмотря на то, что в результате нуклеосинтеза образовалась большая часть существующего сегодня гелия, синтез элементов не завершился полностью в это трехминутное окно. Большая часть Вселенной, около семидесяти пяти процентов ее массы, осталась «необработанной», в виде отдельных протонов (водорода). Скорость протекания ядерных реакций определяется температурой и плотностью Вселенной. По мере расширения и охлаждения Вселенной скорости протекания ядерных реакций быстро уменьшаются, и, в конечном итоге, эти реакции прекращаются вовсе. Почти не существует ядерных реакций, которые происходили бы при низких температурах, — обратите внимание на явное отсутствие ядерного синтеза при комнатной температуре. Таким образом, первичный нуклеосинтез был чем-то вроде космических гонок. Стартовый пистолет выстрелил, когда Вселенной исполнилось около секунды и температура сначала снизилась настолько, что позволила существование ядер. Начался процесс нуклеосинтеза и образования химических элементов. Гонки завершились приблизительно через три минуты (немногим меньше, чем потребовалось олимпийскому чемпиону, чтобы пробежать полтора километра), когда расширяющаяся Вселенная остыла настолько, что более не могла поддерживать реакции ядерного синтеза.

Если бы нуклеосинтез в ранней Вселенной продолжался неопределенно долго, все протоны и нейтроны, в конце концов, превратились бы в железо. Но почему в железо, а не в более тяжелые ядра? Хотя энергия высвобождается при слиянии малых ядер для образования больших, ядра, тяжелее ядра железа, могут высвобождать энергию при расщеплении на более маленькие дочерние ядра. Таким образом расщепляется уран, который служит источником энергии для атомных электростанций и атомного оружия. Поскольку как в процессе синтеза ядер легких элементов, так и в ходе расщепления ядер тяжелых элементов высвобождается энергия, минимально возможной энергией должны обладать ядра, имеющие промежуточный размер. Таким, самым энергетически привилегированным ядром, является ядро железа.

Как показано на рисунке 5, теория нуклеосинтеза делает важное предсказание. Количества элементов, образованных ранней Вселенной, зависят от общего количества обычного барионного вещества. Для того чтобы предсказанные количества легких элементов согласовались с реально наблюдаемыми значениями, общее количество барионов (протонов и нейтронов, составляющих ядра) во Вселенной должно находиться в достаточно узком диапазоне. Чтобы предсказания теории нуклеосинтеза не противоречили наблюдаемой действительности, число барионов должно находиться между двумя и восемью процентами общей плотности, необходимой для того, чтобы Вселенная была замкнутой. Если бы общее число барионов во Вселенной превышало восемь процентов от значения плотности замкнутой Вселенной, гелия в ранней Вселенной образовалось бы больше, чем мы видим сегодня. Аналогично, если бы барионов было менее двух процентов, то количество гелия было бы слишком низким. Поразительно, что узкий диапазон значений числа барионов может восстановить правильные количества гелия, дейтерия и лития.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература