Читаем Пять возрастов Вселенной полностью

С другой стороны, белые карлики не могут быть и слишком массивными. Слишком тяжелый белый карлик ожидает сильнейший взрыв. По мере возрастания массы белый карлик становится меньше и плотнее, вследствие чего для поддержания звезды в ее борьбе с противодействующей силой гравитации требуется более высокое давление. Для поддержания этого более высокого давления, в данном случае давления вырожденного электронного газа, частицы должны двигаться быстрее. Когда плотность достигает столь большого значения, что требуемая скорость частиц приближается к скорости света, у звезды начинаются крупные неприятности. Теория относительности Эйнштейна устанавливает строгий предел на любые скорости: никакие частицы не могут двигаться со скоростью, превышающей скорость света. Когда звезда достигает состояния, в котором частицы должны двигаться со скоростями, превышающими скорость света, она обречена. Гравитация побеждает давление вырожденного газа, провоцирует катастрофический коллапс, тем самым инициируя взрыв звезды — вспышку сверхновой. По величине эти эффектные вспышки можно сравнить с теми, что отмечают гибель массивных звезд (как мы уже рассказывали в предыдущей главе).

Чтобы избежать огненной кончины во вспышке сверхновой, белый карлик должен иметь массу, не превышающую 1,4 массы Солнца. Этот жизненно важный массовый масштаб именуется массой Чандрасекара, в честь выдающегося астрофизика С. Чандрасекара. В возрасте восемнадцати лет он путем вычислений нашел этот предел массы во время океанского путешествия из Индии в Великобританию, еще до начала учебы в аспирантуре Кембриджского университета в 1930-е годы. Впоследствии за свой вклад в астрофизику он получил Нобелевскую премию по физике.

Нейтронные звезды

Несмотря на невероятно высокую плотность белых карликов, нейтронная звезда является еще более плотной формой звездного вещества. Типичная плотность белого карлика превышает плотность воды «всего лишь» в миллион раз. Однако ядра атомов гораздо плотнее — примерно в квадрильон (1015) раз плотнее воды, или в миллиард раз плотнее белого карлика. Если звезду сжать до невероятно высокой плотности атомного ядра, звездное вещество может достигнуть экзотической, но стабильной конфигурации. При этих высоких значениях плотности электроны и протоны предпочитают существовать в форме нейтронов, так что, по существу, все вещество пребывает в форме нейтронов. Эти нейтроны вырождаются, и давление, создаваемое ими, опять-таки в силу действия принципа неопределенности, сдерживает звезду от гравитационного коллапса. Нейтронная звезда, которая образуется В результате весьма напоминает отдельное атомное ядро гигантских размеров.

Непостижимо высокие плотности, необходимые для образования нейтронной звезды, естественным образом достигаются во время коллапса, который массивная звезда переживает в конце своей жизни. Центральная область звезды, дошедшей до поздней стадии эволюции, превращается в вырожденное железное ядро, которое в ходе гравитационного коллапса сжимается, инициируя вспышку сверхновой, после которой зачастую остается нейтронная звезда. Кроме того, нейтронные звезды могут образоваться в результате коллапса белых карликов. Если белый карлик медленно увеличивает свою массу, приобретая ее от звезды-спутника, ему иногда удается избежать гибели во вспышке сверхновой и сжаться, превратившись в нейтронную звезду.

По сравнению с белыми и коричневыми карликами нейтронные звезды встречаются относительно редко. Ведь они могут образоваться лишь в результате гибели звезд, масса которых при рождении более чем в восемь раз превышает массу Солнца. Эти массивные звезды представляют собой лишь высокомассовый «хвост» распределения звездных масс. Подавляющее большинство звезд слишком малы. Лишь каждая четырехсотая звезда рождается достаточно большой, чтобы взорваться и оставить после себя нейтронную звезду. Но даже несмотря на столь малые шансы, достаточно большая галактика будет содержать миллионы нейтронных звезд.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература