Читаем Пять возрастов Вселенной полностью

Масса типичной нейтронной звезды примерно в полтора раза превышает массу Солнца. Так же, как в случае с белыми карликами, которые существуют благодаря давлению вырожденного электронного газа, давление вырожденных нейтронов не способно поддерживать остаток звезды произвольно большой массы. Если масса становится слишком большой, гравитация побеждает давление вырожденного газа и звезда сжимается. Максимально возможная масса нейтронной звезды лежит в промежутке между двумя и тремя массами Солнца, однако точное ее значение нам не известно. При непостижимо высоких плотностях, которых достигает вещество в центре нейтронной звезды, оно приобретает весьма экзотические и несколько неопределенные свойства. Несмотря на то, что нейтронные звезды тяжелее Солнца, их радиус достаточно мал: всего десять километров. Маленький размер вкупе с большой массой говорит о невероятной плотности вещества. Кубический сантиметр вещества (размером с кусочек сахара), из которого состоит нейтронная звезда, весит почти столько же, сколько миллиард слонов!

Черные дыры

Четвертым возможным вариантом гибели звезды является ее превращение в черную дыру. После взрыва и угасания самых массивных звезд может остаться объект, масса которого превышает допустимый максимум для нейтронной звезды (значение, находящееся между двумя и тремя массами Солнца). Достаточно массивный звездный остаток не может существовать за счет давления вырожденного газа и должен коллапсировать, превратившись в черную дыру. Аналогичным образом, полностью сформировавшиеся белые карлики и нейтронные звезды могут приобрести дополнительную массу, как правило от сопутствующих им звезд, и стать слишком большими, чтобы существовать за счет давления вырожденного газа. Слишком тяжелые остатки, которые появляются в результате этого, также должны коллапсировать и иногда могут образовать черные дыры.

Черные дыры — странные создания: их гравитационные поля так сильны, что их не может покинуть даже свет. Вообще-то, именно это свойство служит определяющей характеристикой черных дыр. Для этих объектов космическая скорость (скорость, которая требуется, чтобы оторваться от поверхности) превышает скорость света. В силу релятивистского ограничения скорости, наложенного Эйнштейном, — ничто не движется быстрее скорости света — черную дыру не могут покинуть ни частицы, ни излучение. И все же это несомненно строгое утверждение не является абсолютно истинным из-за действия принципа неопределенности Гейзенберга. По истечении весьма долгого времени черные дыры все же вынуждены будут отдать столь крепко удерживаемые в их тисках массы, но это случится лишь через большой срок по завершении эпохи распада.

Черные дыры невероятно компактны. Черная дыра с массой Солнца имеет радиус всего в пару километров (около одной мили). В качестве другого примера отметим, что черная дыра размером с бейсбольный мяч приблизительно в пять раз тяжелее Земли. Эти выдающиеся звездные объекты имеют еще очень много других экзотических свойств, которые будут рассмотрены в следующей главе.

Массивные звезды встречаются относительно редко, а черные дыры, образуемые ими, — еще реже. Менее одной звезды из трех тысяч имеет шанс стать черной дырой после завершения того этапа ее жизни, на котором она сжигает водород. По причине такой скудности эти дублеры звезд не будут играть важной роли, пока не завершится эпоха распада.

Помимо черных дыр, образовавшихся в результате гибели звезд, нашу Вселенную населяет еще одна разновидность этих объектов. Черные дыры, относящиеся к этому второму классу, находятся в центрах галактик. По сравнению с их звездными двойниками эти сверхмассивные черные дыры воистину огромны. Их масса составляет от одного миллиона до нескольких миллиардов масс Солнца. Для сравнения, фактический радиус черной дыры, масса которой равна массе миллиона Солнц, превышает радиус Солнца приблизительно в четыре раза.

Сталкивающиеся галактики

В настоящее время наша Галактика, Млечный Путь, содержит сто миллиардов светящихся звезд, которые в совокупности выглядят как слабо светящаяся полоса, простирающаяся по ночному небу. В эпоху распада небо будет черным как смоль. Но самые большие галактики, удерживаемые от распада гравитационным действием холодных мертвых звезд и темной материи, останутся нетронутыми.

Однако самой неизбежной угрозой для обычных галактик типа Млечного Пути является вовсе не гибель составляющих их звезд, а скорее разрушительные столкновения с другими галактиками. Как правило, галактики существуют скоплениями или группами. От разлетания эти скопления удерживает действие гравитационного притяжения, причем каждая галактика движется через скопление по своей собственной орбите. Когда большие объекты с неплотной структурой, вроде галактик, проходят рядом друг с другом, они испытывают некоторого рода трение, заставляющее их сдвигаться к центру скопления. Вблизи центра скопления галактики располагаются относительно свободно и проявляют склонность к взаимным столкновениям.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература